Basal Insulin Therapy in the Treatment of Insulin Resistant Type 2 Diabetes:

The Role of the Pharmacist in Ensuring Their Safe and Effective Use in Patients

Joshua J. Neumiller, PharmD, CDE, FASCP
Washington State University
Objectives

1. Describe the reasons for the use of high concentration insulin formulations in the treatment of type 2 diabetes

2. Discuss the clinical, pharmacokinetic and pharmacodynamic profiles for current and emerging basal insulins

3. Implement strategies for safely converting between U-100 and concentrated insulin formulations using different syringes and pen devices in patients with type 2 diabetes

4. Review currently available insulin pens and syringes used for the administration of insulin

5. Explain and apply strategies to overcome the barriers to insulin-mediated glucose control
Joshua J. Neumiller, PharmD, CDE, FASCP has received research grant support from Johnson & Johnson, AstraZeneca, Merck and Novo Nordisk. He has served on a speaker bureau for Novo Nordisk and Janssen, and has served on an advisory board for Sanofi and Janssen.
The Diabetes Epidemic
Diabetes in the United States

- 29.1 million people (9.3% of the population) have diabetes
- 8.1 million are undiagnosed
- CDC estimates that 1 in 3 adult Americans will have diabetes by 2050
- Type 2 Diabetes (T2DM)
 - Associated with obesity, older age, decreased physical activity, and race/ethnicity
 - Incidence in children and adolescents is increasing
- Estimated total costs in 2012: $245 billion

Type 2 Diabetes

- Characterized by chronic hyperglycemia
- Associated with microvascular and macrovascular complications
- Generally arises from a combination of insulin resistance and β-cell dysfunction

By the time a person is diagnosed with type 2 diabetes, approximately how much β-cell function has been lost?

1. <10%
2. 10–30%
3. 30–50%
4. 50–80%
5. 100%
Progressive Deterioration in β-Cell Function Over Time

HOMA = homeostasis model assessment.
Pathophysiologic Defects in Type 2 Diabetes: The Ominous Octet

Decreased Incretin Effect

Neurotransmitter Dysfunction

Islet β-cell

Impaired Insulin Secretion

Increased Glucagon Secretion

Islet α-cell

Increased Glucose Secretion

Hyperglycemia

Increased Lipolysis

Increased Glucose Reabsorption

Increased HGP

Decreased Glucose Uptake

Neurotransmitter Dysfunction

Insulin Resistance
~90% of People with Type 2 Diabetes are Overweight or Obese

Insulin Resistance

• Major defect in individuals with type 2 diabetes
• Reduced biological response to insulin
• Closely associated with obesity
• Associated with cardiovascular risk
• Type 1 diabetes patients can be insulin resistant as well…

More than 80% of Patients Progressing to Type 2 Diabetes are Insulin Resistant

- Insulin sensitive; low insulin secretion (16%)
- Insulin sensitive; good insulin secretion (1%)
- Insulin resistant; good insulin secretion (29%)
- Insulin resistant; low insulin secretion (54%)

Insulin Resistance Reduces Response to Circulating Insulin

- **Glucose output** increases in the Liver.
- **Glucose uptake** decreases in Muscle and Adipose tissue.
- Insulin/medication requirements needed to maintain glycemic control increases, leading to **Hyperglycemia**.
Treatment Options for Type 2 Diabetes
12 Pharmacotherapy Options

Insulin
- **Bolus insulin**
 - Insulin lispro (Humalog)
 - Insulin aspart (NovoLog)
 - Insulin glulisine (Apidra)
 - Insulin human inhaled (Afrezza)
 - Regular human insulin
 - (Humulin R)
 - (Novolin R)
- **Basal insulin**
 - Insulin NPH
 - (Humulin N)
 - (Novolin N)
 - Insulin detemir (Levemir)
 - Insulin glargine U-100 (Lantus)
 - Insulin glargine U-300 (Toujeo)

Oral Medications
- \(\alpha\)-glucosidase inhibitors (AGI)
- Biguanides
- Bile acid sequestrants (BAS)
- Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins)
- Dopamine agonists
- Glitinides
- Sulfonylureas
- Sodium glucose co-transporter-2 inhibitors
- Thiazolidinediones (TZDs or glitazones)

Non-insulin injectable agents
- Glucagon-like peptide-1 (GLP-1) agonists
- Amylinomimetics

Glucose-Lowering Comparison

<table>
<thead>
<tr>
<th>Monotherapy</th>
<th>Route of Administration</th>
<th>Targets Insulin Resistance</th>
<th>Target Glucose: FPG or PPG</th>
<th>A1C Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonylurea</td>
<td>Oral</td>
<td>No</td>
<td>Both</td>
<td>1.5–2.0</td>
</tr>
<tr>
<td>Metformin</td>
<td>Oral</td>
<td>Yes</td>
<td>FPG</td>
<td>1.5</td>
</tr>
<tr>
<td>Glitazones</td>
<td>Oral</td>
<td>Yes</td>
<td>Both</td>
<td>1.0–1.5</td>
</tr>
<tr>
<td>Meglitinides</td>
<td>Oral</td>
<td>No</td>
<td>PPG</td>
<td>0.5–2.0</td>
</tr>
<tr>
<td>AGIs</td>
<td>Oral</td>
<td>No</td>
<td>PPG</td>
<td>0.5–1.0</td>
</tr>
<tr>
<td>DDP-4 inhibitors</td>
<td>Oral</td>
<td>No</td>
<td>PPG</td>
<td>0.5–0.7</td>
</tr>
<tr>
<td>Bile acid sequestrant</td>
<td>Oral</td>
<td>No</td>
<td>PPG</td>
<td>0.4</td>
</tr>
<tr>
<td>Dopamine agonists</td>
<td>Oral</td>
<td>No</td>
<td>PPG</td>
<td>0.4</td>
</tr>
<tr>
<td>SGLT-2 inhibitors</td>
<td>Oral</td>
<td>↓ glucose toxicity</td>
<td>FPG</td>
<td>0.7–1.1</td>
</tr>
<tr>
<td>GLP-1 agonists</td>
<td>Injectable</td>
<td>No</td>
<td>Short-acting – PPG</td>
<td>0.8–1.5</td>
</tr>
<tr>
<td>Amylin analogs</td>
<td>Injectable</td>
<td>No</td>
<td>Long-acting – Both</td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>Injectable</td>
<td>↓ glucose toxicity</td>
<td>Basal – FPG Solar – FPG</td>
<td>↓ as much as needed</td>
</tr>
</tbody>
</table>

FPG = fasting plasma glucose; PPG = postprandial glucose.

Basal Insulin Therapy: Concept and Physiology
UKPDS: Progressive Deterioration in Glycemic Control Over Time

<table>
<thead>
<tr>
<th>Time from Randomization (y)</th>
<th>Median A1C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.9</td>
</tr>
<tr>
<td>3</td>
<td>7.6</td>
</tr>
<tr>
<td>6</td>
<td>8.6</td>
</tr>
<tr>
<td>9</td>
<td>9.6</td>
</tr>
<tr>
<td>12</td>
<td>10.6</td>
</tr>
<tr>
<td>15</td>
<td>11.6</td>
</tr>
</tbody>
</table>

HbA1C Level

Currently Available Insulins

<table>
<thead>
<tr>
<th>Insulin Type</th>
<th>Onset</th>
<th>Peak, h</th>
<th>Duration of Action, h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid-acting analogs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin lispro, aspart,</td>
<td>15 min</td>
<td>0.5–1.5</td>
<td>3–5</td>
</tr>
<tr>
<td>glulisine</td>
<td>12–15 min</td>
<td>~1.0</td>
<td></td>
</tr>
<tr>
<td>Insulin human inhaled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-acting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular human (U-100)</td>
<td>30–60 min</td>
<td>2–4</td>
<td>5–8</td>
</tr>
<tr>
<td>Regular human (U-500)</td>
<td>30–60 min</td>
<td>4–8</td>
<td>14–15</td>
</tr>
<tr>
<td>Intermediate-acting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human NPH insulin</td>
<td>1–3 h</td>
<td>6–12</td>
<td>12–24</td>
</tr>
<tr>
<td>Long-acting (basal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin glargine</td>
<td>2–4 h</td>
<td>No pronounced peak</td>
<td>20–24</td>
</tr>
<tr>
<td>Insulin detemir</td>
<td>1–3 h</td>
<td></td>
<td>18–20</td>
</tr>
<tr>
<td>Ultralong-acting (basal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin glargine U-300</td>
<td>6 h</td>
<td>No pronounced peak</td>
<td>≤36</td>
</tr>
</tbody>
</table>

Thinking Like a Pancreas

- **No food**
- **Meals**
- **Less overnight**
- **More for “waking up”**

Time:
- 8 AM
- 12 NOON
- 3 PM
- 6 PM
- 9 PM
- 3 AM
- 7 AM
PK Profile of Currently Available Insulins

PK = pharmacokinetic; NPH = neutral protamine Hagedorn.

Insulin Regimens Used in T2DM

- **Basal only**
 - 1 injection
 - Added to oral agents

- **Basal plus**
 - 2 injections or 1 injection + 1 inhalation
 - Adding one rapid-acting analog sequentially starting with largest meal

- **Basal bolus**
 - 4 injections or 1 injection + 3 inhalations
 - Rapid-acting analog before each meal

- **Pre-mixed**
 - 2 injections

The Basal-Bolus Concept

• Basal insulin – 50% of daily needs
 – Controls nighttime and between meal glucose
 • At a nearly constant level

• Bolus insulin – 50% of daily needs
 – Controls mealtime glucose
 – 10–20 % of total daily insulin requirement at each meal

• Correction dose (sensitivity factor)
 – Correct hyperglycemia reactivity

Insulin Therapy in Patients with Insulin Resistance

- Insulin, insulin, and yet more insulin!
 - Causes weight gain and fluid retention
 - Increased risk of hypoglycemia
 - Expensive at high volumes (especially the pens)
 - Multiple injections per day often needed
- Pumps not practical with high volume insulin usage
High Doses of Insulin

• **Concerns:**
 - Hypoglycemia
 - Medication errors in dosing
 - Absorption issues

• **Problems:**
 - Over-basalization
 - Failure to treat the physiological defects
 - Insulin resistance
 - Decrease satiety
Concentrated Insulin
Why Concentrated Insulin?

• When daily insulin requirements are in excess of 200 units/day, the volume of U-100 injected insulin becomes a challenge:
 – Physically too large for a single SC administration
 – Multiple injections are required to deliver a single dose
 – Increased injections may lead to adherence issues and poor glycemic control
 – Discomfort
 – Unpredictable absorption (rate-limiting step in insulin activity)

Patients Who May Require Concentrated Insulin

• Patients with insulin resistance
 – Patients with inherited insulin receptor abnormalities or presence of autoantibodies to insulin receptor
 – Diabetes patients with insulin antibodies
 – Type 2 diabetes patients
 – Overweight/obese Type 1 diabetes patients

• Other patients
 – Obstetrics patients
 – Patients receiving high-dose glucocorticoid therapy

Currently Available Concentrated Insulins

Regular human insulin U-500
(Humulin R U-500)

Insulin glargine U-300
(Toujeo)

U-500 Regular Human Insulin

• U-500 is highly concentrated and contains five times as much insulin in 1 mL as standard U-100 insulin

• U-500 vial
 - U-500: contains 20 mL
 - U-100: contains 10 mL

• U-500 vial
 - Marked with a band of diagonal brown stripes to distinguish it from the U-100 vial, which has no stripes
 - “U-500” is also highlighted in red on the label

U-100 Insulin vs U-500 Insulin

- Both have onset of action of 30 minutes
- U-500 insulin exhibits a delayed and lower peak effect relative to U-100
- U-500 insulin typically has a longer duration of action compared to U-100 (up to 24 hours following a single dose)
- Clinical experience has shown that U-500 insulin frequently has time action characteristics reflecting both prandial and basal activity

PK and PD Profiles for U-500 vs U-100 Human Insulin

IRI = immunoreactive insulin.

Safety Concerns with Concentrated Insulin
Medication Errors Associated with U-500 Insulin

• Some health care professionals may not be aware of U-500 insulin, increasing the chance of dispensing errors
 – From the shelf during dispensing
 – From the computer screen when prescribing
 – Communication errors during medication reconciliation

• Dosing errors
 – No insulin syringe designed to measure U-500 insulin

• Due to increasing medication errors with U-500 insulin and the lack of a U-500 specific syringe, The Institute for Safe Medication Practices suggests “It’s time to rethink safe use of strengths above U-100”

U-500 Insulin Dosing Conversion

<table>
<thead>
<tr>
<th>U-500 Insulin Dose (Actual units)</th>
<th>U-100 Syringe (Unit markings)</th>
<th>Volume for Tuberculin Syringe (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>0.10</td>
</tr>
<tr>
<td>75</td>
<td>15</td>
<td>0.15</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>0.20</td>
</tr>
<tr>
<td>125</td>
<td>25</td>
<td>0.25</td>
</tr>
<tr>
<td>150</td>
<td>30</td>
<td>0.30</td>
</tr>
<tr>
<td>175</td>
<td>35</td>
<td>0.35</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.40</td>
</tr>
<tr>
<td>225</td>
<td>45</td>
<td>0.45</td>
</tr>
<tr>
<td>250</td>
<td>50</td>
<td>0.50</td>
</tr>
<tr>
<td>275</td>
<td>55</td>
<td>0.55</td>
</tr>
<tr>
<td>300</td>
<td>60</td>
<td>0.60</td>
</tr>
<tr>
<td>325</td>
<td>65</td>
<td>0.65</td>
</tr>
<tr>
<td>350</td>
<td>70</td>
<td>0.70</td>
</tr>
<tr>
<td>375</td>
<td>75</td>
<td>0.75</td>
</tr>
<tr>
<td>400</td>
<td>80</td>
<td>0.80</td>
</tr>
<tr>
<td>425</td>
<td>85</td>
<td>0.85</td>
</tr>
<tr>
<td>450</td>
<td>90</td>
<td>0.90</td>
</tr>
<tr>
<td>475</td>
<td>95</td>
<td>0.95</td>
</tr>
<tr>
<td>500</td>
<td>100</td>
<td>1.00</td>
</tr>
</tbody>
</table>

*The following dosing formulas may also be used: dose (actual units) x 0.2 = unit markings in a U-100 insulin syringe, dose (actual units) x 0.002 = volume (mL) in a tuberculin syringe.

Food and Drug Administration. Humulin R-U-500 (concentrated) Insulin Human Injection. Drugs@FDA.gov.
New and Emerging Basal Insulins
Quest for Better Insulin Products

1. Efficacy
 - Reductions in A1C
 - Reductions in FBG and PPG

2. Convenience
 - Pen dosing
 - Flexible dosing (any time of day)
 - Different concentrations
 - Ability to mix with other insulin and non-insulin agents

3. Safety
 - Low incidence of hypoglycemia
 - Low incidence of nocturnal hypoglycemia
 - Less individual variability
 - Less weight gain
Newly Approved U-300 Insulin Glargine

- U-300 insulin glargine offers a smaller depot surface area leading to a reduced rate of absorption

- Provides a flatter and prolonged pharmacokinetic and pharmacodynamic profiles and more consistency

- Half-life is ~23 hours

- Steady state in 4 days

- Duration of action ≤36 hours

- Associated with less hypoglycemia especially nocturnal hypoglycemia

- FDA approved February 25, 2015

U-300 glargine displays a more even and prolonged PK/PD profile compared with U-100 glargine, offering blood glucose control beyond 24 hours.

LLOQ = lower limit of quantification; GIR = glucose infusion rate; PK = pharmacokinetic; PD = pharmacodynamic.

U-300 Glargine vs U-100 Glargine in T2DM: Meta-Analysis of Phase III Trials EDITION 1, 2, & 3

<table>
<thead>
<tr>
<th></th>
<th>Glar U-300 (N=1247)</th>
<th>Glar U-100 (N=1249)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C (%), LS mean</td>
<td>–1.02</td>
<td>–1.02</td>
<td>NS</td>
</tr>
<tr>
<td>Weight (kg), LS mean</td>
<td>0.49</td>
<td>0.75</td>
<td>P = 0.058</td>
</tr>
<tr>
<td>Any hypo in 24 hr</td>
<td>67.8</td>
<td>73.8</td>
<td>0.92 (0.87–0.96)</td>
</tr>
<tr>
<td>Any nocturnal hypo</td>
<td>31.7</td>
<td>41.3</td>
<td>0.77 (0.69–0.85)</td>
</tr>
<tr>
<td>Confirmed BG <54 mg/dl or severe hypo</td>
<td>26.9</td>
<td>33.3</td>
<td>0.81 (0.72–0.90)</td>
</tr>
<tr>
<td>Confirmed nocturnal BG <54 mg/dl or severe hypo</td>
<td>9.7</td>
<td>13.2</td>
<td>0.73 (0.59–0.91)</td>
</tr>
</tbody>
</table>

*% people ≥1 event.
LS = least squares; RR = relative risk; BG = blood glucose; CI = confidence interval.
Flexible vs Fixed Dosing U-300 Glargine: Sub-Studies of Phase III Trials

- No difference in A1C between flexible- vs fixed-dosing
- No difference in severe or nocturnal hypoglycemia within each sub-study
U-300 Insulin Glargine

• Only available in pens
 – 300 U/mL, 1.5 mL
 – Max dose per shot is 80 units with current pen
 – New pen in development will allow a max dose of 240 units
 – Just dial the prescribed dose; no conversion needed like U-500

• U-300 glargine pen is white and green with the concentration highlighted in orange to distinguish it from U-100 glargine

U-300 Insulin Glargine Dosing

• Insulin-Naive Patients:
 – Type 1 Diabetes – Start with 1/3 to 1/2 of the total daily insulin dose calculated by using 0.2-0.4 U/kg/day; give the remainder of the total daily insulin dose as a short-acting insulin and divide between each daily meal
 – Type 2 Diabetes – Start with 0.2 U/kg/day

• Type 1 or Type 2 Diabetes:
 – Changing from once daily long-acting or intermediate-acting insulin:
 • Initial dose can be the same as the once daily long-acting dose; for patients controlled on U-100 insulin glargine, expect that a higher daily dose of U-300 glargine will be needed to maintain the same level of glycemic control
 – Changing from twice daily NPH insulin:
 • Initial dose is 80% of the total daily NPH dosage

Insulin Degludec*

- Duration of action >42 hours
- Half-life ~25 hours
 - Detectable for at least 5 days
- Steady state in 2–3 days
- FDA denied approval in 2013, research continues
 - Approved in EU

*Not FDA approved.

Basal Insulin Degludec

Flat, stable profile of both 100 unit/mL and 200 unit/mL formulations

Mean 24-Hour GIR Profile of the Two Insulin Degludec Formulations at Steady State

GIR = glucose infusion rate.

Pharmacodynamic Variability with Insulin Degludec vs Insulin Glargine

Subjects listed in increasing order of individual coefficient of variation

U-200 Insulin Degludec: Safety and Efficacy

26-week Open-label, Randomized Study of 457 Patients with Type 2 Diabetes

No difference in hypoglycemia between the two treatment groups

PEGylated Insulin Lispro*

- Polyethylene glycol polymer covalently attached to lispro
- Half-life 2–3 days
- Steady state in 7–10 days
- Duration of action >36 hours
- Phase II–III clinical trials

*Not FDA-approved.

PEGylated Insulin Lispro (LY2605541) Pharmacodynamics

Glucose clamp study in 32 patients, 8 per study arm

Pegylated Insulin Lispro

Mean GIR (mg/min/kg) vs Time (hours)

- Purple line: 0.33 U/kg
- Dark blue line: 0.5 U/kg
- Cyan line: 0.67 U/kg
- Salmon line: 1.0 U/kg

GIR = glucose infusion rate.

PEGylated Insulin Lispro (LY2605541) vs Glargine U-100 in T1DM

LY2605541 Treatment at 8 weeks

- Significantly lowered A1C vs glargine
- Significantly reduced weight (1.2 kg)
- Increased overall hypos ($p = 0.04$) but less nocturnal hypos ($p = 0.01$)
- Lowered prandial insulin dose
- Significantly increased liver enzymes

Is there an alternative to concentrated insulin for patients on high doses of insulin?
Combination Basal Insulin and GLP-1 RAs

Lifestyle Changes plus Metformin
(± other agents)

Basal
Add Basal Insulin and Titrate

Basal Plus
Add Prandial Insulin at Main Meal

Basal Bolus
Add Prandial Insulin before Each Meal

Basal plus GLP-1 RAs
Barriers to Insulin-Mediated Glucose Control
Significant Delay in Insulin Initiation

SOLVE: Baseline A1C Distribution at Insulin Initiation

A1C (%)

Patients (%)
The reason for delay in starting insulin in diabetes management is:
a. Provider reluctance (clinical inertia)
b. Patient reluctance
c. Lack of time
d. Fear of hypoglycemia
e. All of the above
Key Barriers to Insulin Therapy

Patient Barriers
- Patient reluctance
- Sense of failure
- Loss of independence
- Belief that insulin is ineffective
- Fear of injections
- Fear of hypoglycemia
- Weight gain

Provider Barriers
- Clinical inertia
- Lack of insulin training, time, and/or support
- Fear of hypoglycemia
- Weight gain

Overcoming the Barriers to Insulin Therapy

- Avoid using insulin as a “threat,” but a solution and discuss it as an option early
- Use insulin pens and regimens that offer maximum flexibility
- Give a “limited” trial of insulin
- Tell patient injection is less painful than finger stick and give an injection in the office
- Teach patient to recognize and treat hypoglycemia, and use basal analog insulins to minimize hypoglycemia risk
- Meet with dietitian before initiation of insulin

Insulin Administration
Insulin Titration and Education

• First, do no harm
 – Halt the hypoglycemia

• Fix the fastings

• Pare the postprandials
Patient Education

• Equipment and supplies patients need to effectively manage their insulin therapy at home
 – Insulin
 – Syringes or pen needles
 – Blood glucose meter and strips
 – Lancets and lancing device
 – Glucagon emergency kit
 – Contact information of diabetes care provider(s)
Expiration of Products

<table>
<thead>
<tr>
<th>Products/Device</th>
<th>Refrigerated</th>
<th>Unrefrigerated</th>
<th>Once Used (opened)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin lispro</td>
<td>Expiration Date</td>
<td>28 days</td>
<td>28 days</td>
</tr>
<tr>
<td>Insulin aspart</td>
<td></td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Insulin glulisine</td>
<td></td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Insulin glargine</td>
<td></td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Vials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin human N</td>
<td>Expiration Date</td>
<td>31 days</td>
<td>31 days</td>
</tr>
<tr>
<td>Insulin human R</td>
<td></td>
<td>31 days</td>
<td></td>
</tr>
<tr>
<td>Pens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin lispro</td>
<td>Expiration Date</td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Insulin aspart</td>
<td></td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Insulin glulisine</td>
<td></td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Insulin glargine U-100</td>
<td></td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Insulin glargine U-300</td>
<td></td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Vials and pens</td>
<td>Expiration Date</td>
<td>42 days</td>
<td></td>
</tr>
<tr>
<td>Insulin detemir</td>
<td></td>
<td>42 days</td>
<td></td>
</tr>
<tr>
<td>Inhaled: Insulin human</td>
<td>—</td>
<td>Expiration Date</td>
<td>15 days for device</td>
</tr>
</tbody>
</table>

Do not refrigerate (lispro, glargine) – 28 days, (aspart) – 14 days

(pens should not be refrigerated)

Basal Insulin Delivery Options

<table>
<thead>
<tr>
<th>Insulin</th>
<th>Concentration</th>
<th>Vial</th>
<th>Pen</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPH</td>
<td>U-100</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Glargine</td>
<td>U-100</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Glargine</td>
<td>U-300</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Detemir</td>
<td>U-100</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Regular Human</td>
<td>U-500</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Food and Drug Administration. Drugs@FDA FDA Approved Drug Products. http://www.accessdata.fda.gov
Vial and Syringe

• Some patients still use vials and syringes
 – Wipe the rubber stopper (on vial) with alcohol swab
 – Put equivalent amount of air into the vial before drawing up the insulin (based on insulin dose)

• When mixing insulin:
 – Clear before cloudy
 – Pre-drawn N + R = stable for 30 days refrigerated
Needles and Syringes

- **Outer protective cap**
- **Plunger**
- **Peel foil**
- **Inner protective cap**
- **Needle (cannula)**
- **Needle hub**
- **Barrel**
- **Cap**

Dimensions:
- 12.7 mm (1/2")
- 8 mm (5/16")
- 5 mm (3/16")
Insulin Pens

How to Use an Insulin Pen
Patient Cases
Case 1

- 67-year-old male, retired engineer
 - BMI 45
 - A1c = 8.5%
 - SrCr = 1.2
- Medications:
 - Glargine (pen) 80 units twice per day
 - Aspart (pen) 30–60 units per meal + correction
 - Lisinopril 10 mg daily
 - Atorvastatin 10mg daily
- Total daily dose (TDD) insulin: ~300 units per day
- Largest meal is supper and snacks at night
Case #1 – Question #1

• The physician recently became aware of concentrated insulin and would like to switch the patient to U-500. For a total daily dose of 300 units to be given twice daily, how would you instruct the patient to draw up 150 units of U-500 insulin?

1) Using a U-100 syringe, draw to the 60 units marking

2) Using a U-100 syringe, draw to the 30 units marking

3) Using a tuberculin syringe, draw 0.2 mL

4) Using a tuberculin syringe, draw 0.4 mL
Case 1 Continued

• First assess patient current insulin injection technique
 – If technique is appropriate then…..

• Start U-500 insulin:
 – 300 units divided into two doses = 150 units twice daily
 – 150 units of U-500 insulin is equal to 30 units on a U-100 syringe
 – 30 units x 5 (5 times concentration) = 150 units of actual insulin
 – If using tuberculin syringe, 150 units = 0.3 mL

• U-300 insulin glargine is not a substitute for U-500 insulin because the current U-300 pen delivers only up to 80 units per injection
Case 2

• 56 year old female, high school principal
 – BMI 32
 – A1c = 8.9%
 – SrCr = 1.1

• Patient did report occasional episodes nocturnal hypoglycemia
 – ~ 3–5 per month

• Medications:
 – NPH (pen) 63 units twice per day
 • Morning (7 AM) and 2 hours before bed (9 PM)
 – Metformin 1000 mg daily
 – Sitagliptin 100 mg daily
 – Lisinopril 10 mg daily
 – Simvastatin 20 mg daily

• Total daily dose (TDD) insulin: ~126 units per day
• Patient does not want to start bolus insulin due to erratic meal and work schedules
Case #2 – Question #1

The physician wants to switch the patient to U-300 insulin glargine. What would be your recommendation for switching from 63 units twice daily (126 units/day) NPH to U-300 insulin glargine?

1) Using a U-100 syringe, draw to 21 units marking (63 units) and inject twice daily

2) Using a U-100 syringe, draw to 49 units marking (126 units) and inject once daily

3) Using the U-300 pen, dial to 126 units and inject once daily

4) Using the U-300 pen, dial to 51 units and inject twice daily
Case 2

- Switching to U-300 insulin glargine
 - Determine starting dose:

<table>
<thead>
<tr>
<th>Prior treatment</th>
<th>Start with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Once daily long-acting or intermediate acting insulin</td>
<td>1:1</td>
</tr>
<tr>
<td>Twice-daily NPH</td>
<td>80% total daily basal dose</td>
</tr>
<tr>
<td>No current basal insulin</td>
<td>0.2 U/kg/day</td>
</tr>
</tbody>
</table>

- 126 units x 0.80 = 100.8 units U-300 glargine
 - 101 units/2 = 51 units given twice daily; current U-300 pen has max dose of 80 units per injection

- To minimize hypoglycemia risk, titrate the dose no more frequently than every 3–4 days
Summary

• Type 2 diabetes is a growing epidemic with an ever-growing number of patients requiring high doses of insulin to maintain glycemic control

• Insulin resistance is a MAJOR problem among patients with type 2 diabetes, and combination therapy is often needed to improve insulin sensitivity

• A basal-bolus insulin regimen is best to mimic natural insulin physiology but requires frequent BG monitoring and provider/patient education

• Concentrated insulin is ideal for patients with insulin doses >200 U/day due to the large volume associated with U-100 insulin
Summary Continued

• U-500 regular human insulin is associated with a high incidence of dosing errors due to the lack of a U-500 specific insulin syringe

• Newly approved U-300 insulin glargine is available in a pen, avoiding the need for conversion using U-100 or tuberculin syringes needed with U-500 insulin

• Insulin in T2DM is often delayed, but in order to optimize glycemic control, it is important that clinicians recognize and address the barriers to insulin therapy

• U-300 insulin glargine and emerging basal insulins have improved PK/PD profiles compared to current insulins
 – Flatter time–action profiles with less variability
 – Less hypoglycemia, particularly nocturnal hypoglycemia