Agenda

- 1. Welcome and Introduction
- 2. MasterClass and Practicum Sessions
 - Implications of the Immuno-Oncology Revolution and the Potential to Improve Outcomes in Patients With SCLC With Cancer Immunotherapies: What Managed Care Professionals Need to Know
 - Integrating Immuno-Oncology Into the Plan for Patients With SCLC in Managed Care Settings: Challenges, Practicalities, and Implications
- 3. Audience Q&A
- 4. Summary, Reflections, and Take-Home Points

Managing SCLC¹

- Historic standard for ES-SCLC was chemotherapy
 - Cisplatin + etoposide introduced in the 1970s
 - Relatively well-tolerated chemotherapy
- SCLC initially highly responsive to therapy
 - Cisplatin + etoposide RR 61%
 - > 10% complete response
- Responses transient
 - PFS 4.0 months
- OS 8.6 months

Managing SCLC (Cont'd)

- Dozens of failed randomized trials
 - Despite impressive initial responses, countless novel strategies failed to extend patient survival
 - Numerous challenges to drug development in SCLC
 - Smoking-related cancer = patient comorbidities
 - Rapid clinical course not tolerant of treatment delays (trial screening)
 - Standard chemotherapy easy to administer (fewer referrals)
 - Limited understanding of the biology, scant tumor specimens
 - Inadequate preclinical models

Ways to Enhance T-Cell Attack¹

PeerView.com

BTLA, B-lymphocyte and T-lymphocyte attenuator; CTLA-4, cytotoxic T-lymphocyte–associated protein 4; GITR, glucocorticoid-induced TNFR-related protein; HVEM, herpes virus entry mediator; LAG-3, lymphocyte activation gene-3; PD-1, programmed cell death protein 1; TIM-3, T-cell immunoglobulin and mucin-containing protein 3; VISTA, V-domain immunoglobulin-containing suppressor of T-cell activation. 1. Mellman I et al. *Nature*. 2011;480:480-489.

Immune Checkpoint Inhibitors Block T-Cell Inhibitory Signals

CTLA-4 Checkpoint Inhibition

PD-1/PD-L1 Checkpoint Inhibition

T-cell priming stage

MHC, major histocompatibility complex; PD-L1, programmed cell death ligand 1; TCR, T-cell receptor.

Current Treatment Landscape in ES-SCLC

CheckMate -032: Nivolumab ± Ipilimumab Efficacy and Safety Summary¹

- N = 216 patients (nonrandomized)
 - Previously treated SCLC, primary endpoint: ORR

Endpoint	Nivolumab 3 mg/kg (n = 98)	Nivolumab 1 mg/kg + Ipilimumab 3 mg/kg (n = 61)	Nivolumab 3 mg/kg + lpilimumab 1 mg/kg (n = 54)
Response rate, %	10	23	19
Median PFS, mo	1.4	2.6	1.4
1-year OS rate, %	33	43	35
Median OS, mo	4.4	7.7	6.0
Grade ≥3 AEs, %	13	30	19

AE, adverse event; ORR, objective reponse rate. 1. Antonia SJ et al. *Lancet Oncol.* 2016;17:883-895.

CheckMate -032: Nivolumab ± Ipilimumab OS¹

CheckMate -032, nonrandomized cohort

OS, overall survival.
 Hellmann MD et al. 2017 American Society of Clinical Oncology Annual Meeting (ASCO 2017). Abstract 8503.

Salvage Immunotherapy Approvals

3L Nivolumab¹

- RR 11.9%, DOR 17.9 mo
- 18-mo survival rate 20%
- Accelerated approval as 3L therapy: August 16, 2018

3L Pembrolizumab²

- RR 19%, median DOR not reached
- Accelerated approval as 3L therapy: June 18, 2019

DOR, duration of response; RR, response rate. 1. Ready N et al. *J Thorac Oncol.* 2019;14:237-244. 2. Chung HC et al. *J Thorac Oncol.* 2020;15:618-627.

Late-Line Immunotherapy Options for ES-SCLC¹⁻³

Nivolumab approved for 3L therapy based on data from CheckMate -032 subgroup

- ORR 12% (95% CI, 6.5-19.5)
- Responses durable for ≥6 months in 77%, ≥12 months in 62%, and ≥18 months in 39% of responding patients

Pembrolizumab approved for 3L therapy based on KEYNOTE-158 cohort G and KEYNOTE-028 cohort C1

- ORR was 19% (95% CI, 11-29); CR rate was 2%
- Responses were durable for ≥6 months in 94%, ≥12 months in 63%, and ≥18 months in 56% of responding patients

3L, third line; CI, confidence interval; CR, complete response; ORR, overall response rate.
1. Antonia SJ et al. *Lancet Oncol.* 2016;17:883-895.
2. Chung HC et al. *J Clin Oncol.* 2018;36(suppl 15):8506.
3. Ott PA et al. *J Clin Oncol.* 2017;35:3823-3829.

Nivolumab and Pembrolizumab in ES-SCLC¹

- Important FDA approvals in 3L setting
 - High attrition rate in SCLC, few patients receive 3L therapy
- Prospective data collection
- 432 patients with ES-SCLC
 - 93% received 1L therapy
 - 50% received 2L therapy
 - 22% received 3L therapy
- Potentially transformative drugs
 - How do we increase potential impact?

Number of Treatment Lines (N = 432)

PeerView.com

1L, first line; 2L, second line; 3L, third line; ES-SCLC, extensive-stage small cell lung cancer, FDA: Food and Drug Administration; SCLC, small cell lung cancer. 1. Steffens C-C et al. *Lung Cancer*. 2019;130:216-225.

IMpower133 Study Design: Atezolizumab + Chemo in ES-SCLC¹

• Key secondary endpoints: ORR, DOR, safety

AUC, area under the curve; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; ES-SCLC, extensive-stage small cell lung cancer; ORR, overall response rate; OS, overall survival; PCI, prophylactic cranial irradiation; PD, progressive disease; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; SOC, standard of care.

1. Horn L et al. N Engl J Med. 2018;379:2220-2229.

IMpower133: Atezolizumab + Chemo PFS¹

CI, confidence interval; HR, hazard ratio; PFS, progression-free survival. 1. Horn L et al. *N Engl J Med*. 2018;379:2220-2229.

IMpower133: Atezolizumab + Chemo OS¹

CI, confidence interval; HR, hazard ratio; OS, overall survival. 1. Horn L et al. *N Engl J Med*. 2018;379:2220-2229.

IMpower133: Atezolizumab + Chemo Updated OS¹

Atezo, atezolizumab; CI, confidence interval; CP, carboplatin; ET, etoposide; HR, hazard ratio; OS, overall survival.

^a *P* value is provided for descriptive purpose. CCOD 24 January 2019.

1. Reck M et al. European Society for Medical Oncology Congress 2019 (ESMO 2019). Abstract 2374.

IMpower133: Safety Results¹

Patients, n (%)	Atezolizumab (n = 198)	Placebo (n = 196)
Patients with ≥1 AE Grade 3-4 AEs	198 (100) 133 (67.2)	189 (96.4) 125 (63.8)
Treatment-related AEs	188 (94.9)	181 (92.3)
Serious AEs	74 (37.4)	68 (34.7)
Immune-related AEs	79 (39.9)	48 (24.5)
AEs leading to withdrawal from any treatment From atezolizumab/placebo From carboplatin From etoposide	22 (11.1) 21 (10.6) 5 (2.5) 8 (4.0)	6 (3.1) 5 (2.6) 1 (0.5) 2 (1.0)
Treatment-related deaths	3 (1.5)	3 (1.5)

- Median duration of treatment with atezolizumab: 4.7 mo (range, 0-21)
- Median number of doses received
 - Atezolizumab: 7 (range, 1-30)
 - Chemotherapy: 4 doses carboplatin, 12 doses for etoposide (same for both treatment groups)

PeerView.com

AE, adverse event.

1. Liu S et al. International Association for the Study of Lung Cancer 18th World Conference on Lung Cancer (WCLC 2018). Abstract PL02.07.

Atezolizumab + Carboplatin/Etoposide

- FDA approved March 18, 2019
- EMA approved September 6, 2019
- NCCN category 1, preferred option

EMA, European Medicines Agency; FDA, Food and Drug Administration; NCCN, National Comprehensive Cancer Network.

CASPIAN Study Design: Durvalumab ± Tremelimumab ± EP in ES-SCLC¹

EP, etoposide and cisplatin; ES-SCLC, extensive-stage small cell lung cancer; ORR, overall response rate; OS, overall survival; PCI, prophylactic cranial irradiation; PD, progressive disease; PFS, progression-free survival; PS, performance status; RECIST, Response Evaluation Criteria in Solid Tumors; WHO, World Health Organization.

1. Paz-Ares LG et al. ASCO 2020. Abstract 9002.

CASPIAN: Durvalumab + EP vs EP OS¹

Cl, confidence interval; EP, etoposide and cisplatin; HR, hazard ratio; OS, overall survival. 1. Paz-Ares L et al. WCLC 2019. Abstract PL02.11.

CASPIAN: Durvalumab + EP vs EP Updated OS¹

CI, confidence interval; EP, etoposide and cisplatin; HR, hazard ratio; OS, overall survival. 1. Paz-Ares LG et al. ASCO 2020. Abstract 9002.

CASPIAN: Durvalumab + Tremelimumab + EP vs EP OS¹

Cl, confidence interval; durva, durvalumab; EP, etoposide and cisplatin; HR, hazard ratio; OS, overall survival; treme, tremelimumab. 1. Paz-Ares LG et al. ASCO 2020. Abstract 9002.

CASPIAN: Durvalumab + Tremelimumab + EP vs Durvalumab + EP vs EP OS¹

• Median duration of follow-up in censored patients: 25.1 mo (range, 0.1-33.7)

Durva, durvalumab; EP, etoposide and cisplatin; HR, hazard ratio; OS, overall survival; treme, tremelimumab. 1. Paz-Ares LG et al. ASCO 2020. Abstract 9002.

CASPIAN: Safety Results¹

	Durvalumab + Tremelimumab + EP (n = 266)	Durvalumab + EP (n = 265)	EP (n = 266)
Any-grade all-cause AEs, n (%)	264 (99.2)	260 (98.1)	258 (97.0)
Grade 3/4 AEs	187 (70.3)	165 (62.3)	167 (62.8)
Serious AEs	121 (45.5)	85 (32.1)	97 (36.5)
AEs leading to treatment discontinuation	57 (21.4)	27 (10.2)	25 (9.4)
Immune-related AEs	96 (36.1)	53 (20.0)	7 (2.6)
AEs leading to death	27 (10.2)	13 (4.9)	15 (5.6)
Treatment-related AEs leading to death	12 (4.5)	6 (2.3)	2 (0.8)
E, adverse event; EP, etoposide and cisplatin. Paz-Ares LG et al. ASCO 2020. Abstract 9002.			PeerView.con

Durvalumab + Platinum/Etoposide

NCCN category 1, preferred option

PeerView.com

FDA, Food and Drug Administration; NCCN, National Comprehensive Cancer Network.

First-Line Chemo-Immunotherapy

IMpower133^{1,2} FDA approved March 2019

 Addition of anti–PD-L1 (atezolizumab) to 1L chemotherapy improves OS without significant toxicity

CASPIAN³ FDA approved March 2020

- Addition of anti–PD-L1 (durvalumab) to 1L chemotherapy improves OS without significant toxicity
- Addition of tremelimumab to durvalumab + 1L chemotherapy increased toxicity, did not prolong survival

Two additional randomized trials at #ASCO20

PeerView.com

1L, first line; ASCO, American Society of Clinical Oncology; FDA, Food and Drug Administration; OS, overall survival; PD-L1, programmed cell death ligand 1. 1. Horn L et al. *N Engl J Med*. 2018;379:2220-2229. 2. Reck M et al. ESMO 2019. Abstract 2374. 3. Paz-Ares LG et al. ASCO 2020. Abstract 9002.

KEYNOTE-604: Pembrolizumab in Advanced SCLC¹

PeerView.com

AJCC, American Joint Committee on Cancer; AUC, area under the curve; BICR, blinded independent central review; DOR, duration of response; ECOG PS: Eastern Cooperative Oncology Group performance status; LDH, lactose dehydrogenase; ORR, overall response rate; OS, overall survival; PCI, prophylactic cranial irradiation; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; SCLC, small cell lung cancer; ULN, upper limit of normal. 1. Rudin CM et al. ASCO 2020. Abstract 9001.

KEYNOTE-604: PFS Results¹

CI, confidence interval; EP, etoposide and cisplatin; HR, hazard ratio; PFS, progression-free survival. 1. Rudin CM et al. ASCO 2020. Abstract 9001.

KEYNOTE-604: OS Results¹

CI, confidence interval; EP, etoposide and cisplatin; HR, hazard ratio; OS, overall survival. 1. Rudin CM et al. ASCO 2020. Abstract 9001.

Cross-Trial Comparison

Study	Arm	n	Median OS, mo	12-mo OS, %	18-mo OS, %
IMpower133 ¹	Atezolizumab + CP/ET	201	12.3	51.9	34.0
	CP/ET	202	10.3	39.0	21.0
			HR = 0.76 (95% Cl, 0.60-0.95)		
CASPIAN ²	Durvalumab + EP	268	12.9	52.8	32.0
	EP	269	10.5	43.8	30.7
	Durvalumab + tremelimumab + EP	268	10.4	39.3	24.8
		HR = 0.75 (durvalumab); HR = 0.82 (durvalumab + tremelimumab)			
KEYNOTE-604 ³	Pembrolizumab + EP	228	10.8	45.1	
	EP	225	9.7	39.6	
			HR = 0.80		

Cl, confidence interval; CP, carboplatin; EP, etoposide and cisplatin; HR, hazard ratio; OS, overall survival.

1. Reck M et al. ESMO 2019. Abstract 2374. 2. Paz-Ares LG et al. ASCO 2020. Abstract 9002. 3. Rudin CM et al. ASCO 2020. Abstract 9001.

EA5161: Nivolumab + Chemo in ES-SCLC¹

AUC, area under the curve; ES-SCLC, extensive-stage small cell lung cancer; LDH, lactate dehydrogenase; PFS, performance-free survival; PS, performance status; ULN, upper limit of normal. 1 Leal T et al. ASCO 2020 Abstract 9000

EA5161: Nivolumab ± CE Efficacy¹

Addition of nivolumab improved OS

CE, cisplatin/carboplatin and etoposide; CI, confidence interval; HR, hazard ratio; PFS, progression-free survival. 1. Leal T et al. ASCO 2020. Abstract 9000.

Immune Checkpoint Inhibitors in ES-SCLC¹⁻³

Reck M et al. ESMO 2019. Abstract 2374. 2. Paz-Ares LG et al. ASCO 2020. Abstract 9002. 3. Rudin CM et al. ASCO 2020. Abstract 9001.

Timing of Immunotherapy¹

Can initiation of immunotherapy be delayed?

1. Horn L et al. N Engl J Med. 2018;379:2220-2229.

CheckMate -331: Second-Line Nivolumab¹

- SCLC
- Recurrence/PD after 1L platinum CT or CRT (≥4 cycles)
- ECOG PS ≤1
- No symptomatic CNS metastases
- No prior therapy with anti–CTLA-4, anti–CD137, anti–PD-1/PD-L1/PD-L2
 (N = 480)

CD, cluster of differentiation; CNS, central nervous system; CT, chemotherapy; CTLA, cytotoxic T-lymphocyte–associated protein 4; CRT, chemoradiotherapy; ECOG PS: Eastern Cooperative Oncology Group performance status; OS, overall survival; PD, progressive disease; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; PD-L2, programmed cell death ligand 2; SCLC, small cell lung cancer. 1. Reck M et al. ESMO 2018. Abstract 489.

CheckMate -331: Second-Line Nivolumab Efficacy¹

- Recurrent/progressive SCLC
 - Randomization to nivolumab or topotecan/ambubicin, n = 480

HR, hazard ratio; PFS, progression-free survival; SCLC, small cell lung cancer. 1 Reck M et al. ESMO 2018. Abstract 489

CheckMate -451

- Randomized phase 3 maintenance trial¹
 - ≥ stable disease following 1L, platinum-based CT
 - ECOG PS 0 to 1
 - No symptomatic
 CNS metastases
 - No autoimmune disease
 (N = 834)

• Secondary endpoints: ORR and PFS

PeerView.com

1L, first line; CNS, central nervous system; CT, chemotherapy; ECOG PS, Eastern Cooperative Oncology Group performance status; PFS, progression-free survival; ORR, overall response rate; OS, overall survival. 1. https://clinicaltrials.gov/ct2/show/NCT02538666.
Maintenance Nivolumab/Ipilimumab¹

CI, confidence interval; HR, hazard ratio; OS, overall survival.

1. Owonikoko T et al. European Lung Cancer Congress 2019 (ELCC 2019). Abstract LBA1_PR.

irAEs Can Affect Any Organ System and Require Close Monitoring by Patients and Clinicians^{1,2}

DRESS, drug rash with eosinophilia and systemic symptoms; irAE, immune-related adverse event. 1. Gordon R et al. *Clin J Oncol Nurs*. 2017;21(suppl 2):45-52. 2. Champiat S et al. *Ann Oncol*. 2016;27:559-574.

Grading and General Recommendations for Managing irAEs¹⁻³

Questions: Continue, suspend, or discontinue immune checkpoint inhibitor? Use of steroids? Referral to specialists?

Grade	Assessment and Management	
Grade 1	Asymptomatic; diagnostic changes only; continue immunotherapy	CICAE
	 Mild to moderate symptoms; grade 2 diagnostic abnormalities Hold treatment; provide supportive care Methylprednisolone 0.5-1.0 mg/kg/day until stable (or oral equivalent) 	Guide
Grade 2	 If improving: transition to oral steroid at start of taper Dosage suggested: 60 mg prednisone daily for 2 weeks Taper over ≥4 weeks to reduce recurrence of symptoms May consider reinitiation of immunotherapy 	
	 If progressing: treat as grade 3/4 Consider hospitalization of patient; multidisciplinary evaluation of toxicity 	
Grade 3/4	 Discontinue immunotherapy (consider organ-specific algorithms; endocrine) Hospitalization indicated Methylprednisolone 1.0-2.0 mg/kg/day until stable 	
Refractory	 If no improvement or progression, additional immunosuppressant treatment may be neede Infliximab 5 mg/kg (except if contraindicated) Mycophenolate mofetil 1 g twice daily Cyclosporine or IVIG 	d

PeerView.com

CTCAE, Common Terminology Criteria for Adverse Events; irAE, immune-related adverse event; IVIG, intravenous immunoglobulin.

1. https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. 2. Brahmer JR et al. J Clin Oncol. 2018;36:1714-1768.

3. Puzanov I et al. J Immunother Cancer. 2017;5:95.

Can We Select Patients?

- Can we identify the right patients for immunotherapy?
- Are there appropriate biomarkers?

Implications of PD-L1 Expression^{1,2}

- IMpower133 using SP263 PD-L1 assay
 - Only 34% of samples evaluable
 - 94% PD-L1 <1% based on tumor cell expression
 - 50% PD-L1 <1% based on immune cell expression
- CASPIAN using SP263 PD-L1 assay
 - Only 52% of samples evaluable
 - 95% PD-L1 <1% based on tumor cell expression
 - 78% PD-L1 <1% based on immune cell expression

PD-L1, programmed cell death ligand 1. 1. Reck M et al. ESMO 2019. Abstract 2374. 2. Paz-Ares L et al. ESMO 2019. Abstract 3837.

PD-L1 Expression: IMpower133¹

Subaroup	Media	n OS, mo		OS HR
Subgroup	Atezo + CP/ET	Placebo + CP/ET		(95% CI)
ITT (N = 403)	12.3	10.3	⊢ •−-	0.76 (0.61-0.96)
ITT-BEP (n = 137)	9.9	8.9	⊢	0.70 (0.48-1.02)
Non-BEP (n = 266)	14.6	11.2	⊢ ♦1	0.81 (0.61-1.08)
PD-L1 expression 1% TC or IC				
<1% PD-L1 (n = 65)	10.2	8.3 —		0.51 (0.30-0.89)
≥1% PD-L1 (n = 72)	9.7	10.6	•	→ 0.87 (0.51-1.49)
PD-L1 expression 5% TC or IC				
<5% PD-L1 (n = 108)	9.2	8.9		0.77 (0.51-1.17)
≥5% PD-L1 (n = 29)	21.6	9.2	•	→ 0.60 (0.25-1.46)
		0.25	1.0	1.5
		•	Hazard Ratio	0
		Fa	vors atezo + CP/ET Favo	rs placebo + CP/ET

Atezo, atezolizumab; BEP, biomarker-evaluable population; CI, confidence interval; CP, carboplatin; ET, etoposide; HR, hazard ratio; IC, immune cell; ITT, intent to treat; OS, overall survival; PD-L1, programmed cell death ligand 1; TC, tumor cell. 1. Reck M et al. ESMO 2019. Abstract 2374.

PD-L1 Expression: CASPIAN¹

CI, confidence interval; EP, etoposide and carboplatin; HR, hazard ratio; IC, immune cells; ITT, intent to treat; PD-L1, programmed cell death ligand 1; TC, tumor cells. 1. Paz-Ares L et al. ESMO 2019. Abstract 3837.

PD-L1 Expression: KEYNOTE-604¹

- Randomized phase 3 trial for 1L ES-SCLC
 - Platinum + etoposide + pembrolizumab/placebo
 - > PFS benefit achieved, did not achieve OS endpoint
 - PD-L1 evaluable in majority of patients (~80%)
 - > Higher rates of PD-L1 positivity than other trials

PD-L1 CPS	Pembrolizumab + EP (n = 228)	Placebo + EP (n = 225)
<1	97 (42.5)	78 (34.7)
≥1	88 (38.6)	97 (43.1)
Unknown	43 (18.9)	50 (22.2)

CPS, combined positive score; EP, etoposide and cisplatin; ES-SCLC, extensive-stage small cell lung cancer; PD-L1, programmed cell death ligand 1; PFS, progression-free survival; OS, overall survival.

1. Rudin CM et al. J Clin Oncol. 2020;38:2369-2379.

PD-L1 Expression: KEYNOTE-604¹ (Cont'd)

 PD-L1 expression (CPS, 22C3) did not correlate with survival benefit from pembrolizumab in ES-SCLC

	Events/ Participants	s					HR (95% CI)
PD-L1 CPS							
<1	159/174			<u> </u>			0.73 (0.54-1.01)
≥1	154/184						0.68 (0.49-0.94)
Platinum administered	l						
Cisplatin	113/129						0.60 (0.41-0.88)
Carboplatin	277/317						0.77 (0.60-0.97)
		-	i	1	i		
	C).25	0.5	1	2	4	
		-				\rightarrow	
			Favors pembro + EP	•	Favors placebo + EP)	

PeerView.com

CI, confidence interval; CPS, combined positive score; EP, etoposide and carboplatin; ES-SCLC, extensive stage small cell lung cancer; HR, hazard ratio; PD-L1, programmed cell death ligand 1; pembro, pembrolizumab.

1. Rudin CM et al. J Clin Oncol. 2020;38:2369-2379.

Blood TMB^{1,2}

- Blood TMB in IMpower133
 - Blood collected for TMB at study entry
 - Predictive role for PFS with second-line atezolizumab in NSCLC
 - > OAK, POPLAR
 - Prespecified cutoffs of 10 and 16 mutations/Mb

Blood TMB: IMpower133¹

Median OS, mo				
Population	Atezolizumab + CP/ET	Placebo + CP/ET		OS HRª (95% CI
Male (n = 261)	12.3	10.9		0.74 (0.54-1.02)
Female (n = 142)	12.5	9.5		0.65 (0.42-1.00)
<65 y (n = 217)	12.1	11.5	⊢	0.92 (0.64-1.32)
≥65 y (n = 186)	12.5	9.6		0.53 (0.36-0.77)
ECOG PS 0 (n = 140)	16.6	12.4		0.79 (0.49-1.27)
ECOG PS 1 (n = 263)	11.4	9.3	⊢	0.68 (0.50-0.93)
Brain metastases (n = 35)	8.5	9.7	⊢I ◆	1.07 (0.47-2.43)
No brain metastases (n = 368)	12.6	10.4		0.68 (0.52-0.89
Liver metastases (n = 149)	9.3	7.8		0.81 (0.55-1.20
No liver metastases (n = 254)	16.8	11.2		0.64 (0.45-0.90
bTMB <10 mut/mb (n = 139)	11.8	9.2		0.70 (0.45-1.07
bTMB ≥10 mut/mb (n = 212)	14.6	11.2		0.68 (0.47-0.97)
bTMB <16 mut/mb (n = 271)	12.5	9.9		0.71 (0.52-0.98)
bTMB ≥16 mut/mb (n = 80)	17.8	11.9		0.63 (0.35-1.15
ITT (N = 403)	12.3	10.3	⊢_ ♦1	0.70 (0.54-0.91
od tumor mutational burden; CI, confidence	interval; CP, carboplatin; ECOG PS,	Eastern 0 1	I 10	25
e Oncology Group performance status; ET utations per megabase; OS, overall surviva	, etoposide; HR, hazard ratio; ITT, ini il; TMB, tumor mutational burden.	ent to treat;		
ata cutoff date: April 24, 2018.			Alezolizumad better Placebo b	eller

^a HRs are unistratified for patient subgroups and stratified for the ITT. ^b TMB assessed as reported in Gandara DR et al.²

1. Liu S et al. WCLC 2018. Abstract PL02.07. 2. Gandara DR et al. Nat Med. 2018;24:1441-1448.

SCLC Subtypes

- Biologic subtypes can be established by differential expression of four key transcription regulators
 - ASCL1 (achaete-scute homologue 1)
 - NeuroD1 (neurogenic differentiation factor 1)
 - YAP1 (yes-associated protein)
 - POU2F3 (POU class 2 homeobox 3)

Distinct SCLC Subsets¹

ASCL1, achaete-scute homologue 1; NE, neuroendocrine; NEUROD1, neurogenic differentiation factor 1; POU2F3, POU class 2 homeobox 3; SCLC, small cell lung cancer; YAP1, yes-associated protein 1.

1. Rudin CM et al. Nat Rev Cancer. 2019;19:289-297.

SCLC Transcription Factor Subtypes¹

ASCL1, achaete-scute homologue 1; IHC, immunohistochemistry; NEUROD1, neurogenic differentiation factor 1; POU2F3, POU class 2 homeobox 3; SCLC, small cell lung cancer.

1. Gay CM et al. WCLC 2019. Abstract OA03.06.

Conclusions

- SCLC is a highly lethal subtype of lung cancer
- Concurrent chemo-immunotherapy is the new first-line standard of care for ES-SCLC
 - Platinum + etoposide + durvalumab
 - Carboplatin + etoposide + atezolizumab
- Second-line and maintenance approaches have not had the same effect
 as concurrent first-line use

ES-SCLC, extensive-stage small cell lung cancer; SCLC, small cell lung cancer.

Estimated Major Market Sales of Key Therapies for SCLC: 2018 to 2028¹

CDK4, cyclin-dependent kinase 4; CDK6, cyclin-dependent kinase 6; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; RNA, ribonucleic acid; SCLC, small cell lung cancer; USD, US dollar. 1. Dawkins JBN, Webster RM. *Nat Rev Drug Discov*. 2020;19:507-508.

Path to Innovation for SCLC

SCLC, small cell lung cancer.

SCLC Working Group

SCLC, small cell lung cancer.

```
PeerView.com
```

Why Progress Has Been Slow: Absence of Driver Mutations in SCLC¹

type XXII alpha 1 chain: CREBBP, CREB binding protein: EP300, E1A binding protein P300; FGFR1, fibroblast growth factor receptor 1: FHIT. fragile histidine triad triphosphatase: FMN2. formin 2: FPR1, fibroblast growth factor receptor 1: IRS2, insulin receptor substrate 2: KIAA1211. capping protein inhibiting dynamics; MYCL1, MYCL proto-oncogene, bHLH transcription factor 1: phosphodiesterase 4D: phosphatidylinositol-4.5bisphosphate 3-kinase catalytic subunit alpha: PTEN, phosphatase and tensin homolog: PTGFRN. prostaglandin F2 receptor retinoblastoma 1: RBL1. RB transcriptional corepressor like 1: RBL2. RB transcriptional corepressor like 1: RGS7. regulator of G protein signaling 7; SCLC, small cell lung cancer; TP53, tumor protein 53: TP73.

Explosion of Immunotherapy Treatments in SCLC

1L, first line; 2L, second line; chemo, chemotherapy; ES, extensive stage; LS, limited stage; SCLC, small cell lung cancer.

Cancer Health Disparities¹

 According to the NCI, cancer health disparities in the United States are adverse differences in cancer measures such as number of new cases, number of deaths, cancer-related health complications, survivorship and QOL after cancer treatment, screening rates, and stage at diagnosis that exist among certain population groups including

NCI, National Cancer Institute; QOL, quality of life. 1. http://www.CancerDisparitiesProgressReport.org.

Survival of Patients With Limited-Stage SCLC Captured in the National Cancer Database, 2004-2013¹

 Uninsured LS-SCLC were 35% less likely to receive chemotherapy and 25% less likely to receive RT

Chemo, chemotherapy; CT, chemotherapy; LC-SCLC, limited-stage small cell lung cancer; SCLC, small cell lung cancer; RT, radiotherapy. 1. Pezzi TA et al. *JAMA Oncol.* 2018;4:e174504.

Economic Burden of SCLC

Direct Costs

- Chemotherapy
- Surgery
- Radiation
- Diagnostics
- Hospitalizations
- ED utilization
- Direct cost of prophylactic therapies
- Bone metastatic disease
- Average monthly total cost
 - \$11,158 (without treatment)
 - \$16,309 (with chemotherapy)
 - \$17,321 (chemotherapy + RT)

Predominant cost drivers were hospitalizations and office visits

Indirect Costs

- Loss in productivity
- Caregiver burden

Formulary Considerations From Managed Care and Health System Perspective

Annual Cost of Frontline Therapy for Extensive-Stage SCLC

- Durvalumab \$11,160 (1st cycle), \$44,640 (4 cycles), \$79,470 (6 mo), \$156,240 (12 mo)
- Atezolizumab \$9,194 (1st cycle), \$36,776 (4 cycles), \$75,386 (6 mo), \$165,476 (12 mo)

• Carboplatin/etoposide \$640 (12 mo)

- Cisplatin/etoposide \$472 (12 mo)
- Irinotecan/etoposide \$604 (12 mo)
- Irinotecan/carboplatin \$1,020 (12 mo)
- Irinotecan/cisplatin \$852 (12 mo)

SCLC, small cell lung cancer; USD, US dollar; WAC, wholesale acquisition cost.

Reimbursement Considerations From Payor and Health System

- Durvalumab annual Medicare spend: \$159,648
- Atezolizumab annual Medicare spend: \$169,080
- NTAP
 - Durvalumab approved for NTAP
 - Atezolizumab approved for NTAP
- ICD-10-PCS procedure code XW03336 or XW04336
 - Place of service code
 - Revenue code
 - ICD-10-CM code
- Additional payment (65% of the costs of the new medical service or technology) or 65% of the amount by which the costs of the case exceed the standard MS-DRG payment

PeerView.com

• CMS has set the maximum add-on payment at \$6,875.90 for qualifying cases

ICD-10, International Classification of Diseases, Tenth Revision; ICD-10-CM, International Classification of Diseases, Tenth Revision, Clinical Modification; ICD-10-PCS, International Classification of Diseases, Tenth Revision, Procedure Coding System. MS-DRG, Medicare Severity–Diagnosis-Related Group; NTAP, new technology add-on payment.

Formulary Justification of Cost vs Benefit

ICI, immune checkpoint inhibitor; NR, not reached; OS, overall survival; PFS, progression-free survival; SCLC, small cell lung cancer.

CASPIAN: OS for Durvalumab + EP vs EP¹

CI, confidence interval; EP, etoposide and carboplatin; HR, hazard ratio; OS, overall survival. 1. Paz-Ares LG et al. ASCO 2020. Abstract 9002.

IMpower133: Updated OS (Coprimary Endpoint)¹

Atezo, atezolizumab; CCOD, clinical cutoff date; CI, confidence interval; CP, carboplatin; ET, etoposide; HR, hazard ratio; OS, overall survival. CCOD 24 January 2019.

^a *P* value is provided for descriptive purposes.

1. Reck M et al. ESMO 2019. Abstract 2374.

Value Framework Tools

- Are value framework tools ready in the United States to help payors and providers drive more cost-effective treatments?
 - Cancer treatments seem to be significant drivers of innovation and cost
- Institute for Clinical and Economic Review (ICER)
- ASCO value framework
- National Comprehensive Cancer Network (NCCN) evidence blocks
- Memorial Sloan Kettering (Abacus)

ASCO Value Framework: Adjuvant and Advanced Disease¹

ltem	Points	Notes
Clinical benefit (OS, PFS, RR)	Up to 80 points	Reflects endpoint and magnitude of benefit; preference given to OS if available
Toxicity	±20 points	Rate of grade 3-5 toxic effects with treatment relative to SOC
Bonus points Palliation Time off all treatment	10 points <20 points	 If treatment improves symptoms For increased time off all treatment

• Cost per month: no points

• Total: up to 100 points (adjuvant disease) or 130 points (advanced disease)

ASCO, American Society of Clinical Oncology; OS, overall survival; PFS, progression-free survival; RR, response rate; SOC, standard of care. 1. https://www.asco.org/practice-policy/cancer-care-initiatives/value-cancer-care.

Options for Structuring Value-Based Contracting

- Medication cost for each individual indication should be aligned with degree of clinical benefit
- When drug is used for low-efficacy indications, initial payment for the drug is low and manufacturer has opportunity to earn back payment based on positive treatment outcomes

PeerView.com

• Repayment structure is based on risk calculation

Bevacizumab as an Example¹

- Manufacturer collaborated with payor on an outcome-based contract for bevacizumab (category 1 recommendation by NCCN guidelines for NSCLC treatment)
- Payor received rebates if patients did not achieve progression-free status at defined timepoints
- Rebate was calculated with equation, taking into consideration actual survival, expected survival, duration of treatment, and risk-sharing percentage

Risk-Share Calculation (Expected - Actual) Expected

(6 - 3)

an	Median PFS for 1L disease in pivotal RCT 6 mo							
)	Expected		6 mo					
	Patient ac	ctua	l assessmer	nts				
	Actual P		3 mo					
ot .	Goal/mis	ssed	by/unrealize	ed be	enefit		3 mo	
ed	Risk-shar not met	50%						
	Realized		3/6 = 50%					
I	Unrealize	d be	enefit				3/6 = 50%	
,	Duration	of tr	eatment				3 mo	
	Cost/mon	th					\$10,000	
x	Risk Share %	x	Treatment Duration	x	Cost/Month	=	Refund amount	
x	50%	x	3	x	\$10,000	=	\$7,500 rebate	

PeerView.com

1L, first line; NCCN, National Comprehensive Cancer Network; NSCLC, non-small cell lung cancer; PFS, progression-free survival; RCT, randomized controlled trial. 1. https://www.healthaffairs.org/do/10.1377/hblog20170403.059442/full.

NICE Position on Atezolizumab for ES-SCLC

January 2020¹ Atezolizumab + carboplatin and etoposide is not recommended, within its marketing authorization, for untreated ES-SCLC in adults

Atezolizumab + carboplatin and etoposide is recommended as an option for untreated ES-SCLC in adults, only if

- They have an ECOG PS of 0 or 1, AND
- The company provides atezolizumab according to the commercial arrangement

PeerView.com

ECOG PS, Eastern Cooperative Oncology Group performance status; ES-SCLC, extensive-stage small cell lung cancer; NICE, National Institute for Health and Care Excellence.

1. https://www.nice.org.uk/guidance/ta638/documents/129. 2. https://www.nice.org.uk/guidance/ta638.

Unmet Need for Research Gaps and Opportunities in SCLC Based on SCLC Working Group¹

	Research Gaps	Biology and Genetics/Genomics				
•	Tumor heterogeneity Mechanisms of metastasis Molecular drivers of resistance	 Molecular characterization of late-stage disease, metastases, pre- and post-therapy, and exceptional responders 				
	Models	Prevention/Screening/Diagnosis				
•	Preclinical models specific to therapeutic targets and development of resistance, including models for testing of immunotherapy approaches	 Molecularly targeted imaging agents for detection and/or response assessment 				
	Therapy and	I Resistance				
•	New approaches to clinical trials in SCLC					

- Studies focused on understanding the unique features of SCLC that could be used to develop new therapeutics
- Methods to improve palliative and supportive care, including optimization of pain management and end-of-life care

PeerView.com

SCLC, small cell lung cancer.

 $1.\ https://deainfo.nci.nih.gov/advisory/ctac/0719/Att%2013_SCLC\%20PWG\%20Final\%20Report_CTAC\%20071719_v2.pdf.$

Future Pipeline Agents

Agent/Route	Clinical Trial ID	Phase	Therapeutic Approach/Target	Clinical Setting
Atezolizumab IV	NCT03811002	3	PD-L1 inhibitor	LS-SCLC
Durvalumab IV ± tremelimumab	NCT03043872	3	PD-L1 inhibitor ± CTLA-4 inhibitor	LS-SCLC
Trilaciclib IV	NCT03041311 NCT02514447 NCT02499770	PDFUA date: 2/15/21	CDK 4/6 inhibitor	Myelopreservation ES-SCLC
Tiragolumab IV + atezolizumab + EP	NCT04256421	3	Anti-TIGIT antibody	ES-SCLC
Niraparib PO	NCT03516084	3	PARP inhibitor	Maintenance ES-SCLC first line
Nanoliposomal pegylated irinotecan IV	NCT03088813	3	Topoisomerase I inhibitor	LS-SCLC or ES-SCLC second line
RRx001 IV	NCT03699956	3	Immunotherapy targeting CD47–SIRPα	SCLC third line
Abemaciclib PO	NCT04010357	2	CDK 4/6 inhibitor	Retinoblastoma wild-type ES-SCLC

CDK4, cyclin-dependent kinase 4; CDK6, cyclin-dependent kinase 6; CTLA-4, cytotoxic T-lymphocyte–associated protein 4; EP, etoposide; ES-SCLC, extensive-stage small cell lung cancer; IV, intravenous; LS-SCLC, limited-stage small cell lung cancer; PARP, poly ADP-ribose polymerase; PDFUA, Prescription Drug User Fee Act; PD-L1, programmed cell death ligand 1; PO, orally; SCLC, small cell lung cancer; SIRPα, signal regulatory protein α; TIGIT, T-cell immunoreceptor with Ig and ITIM domains.

Durva ± Treme After Concurrent Chemoradiotherapy for Patients With Limited-Stage SCLC: The ADRIATIC Study¹

Arm	Intervention
Experimental: durvalumab + placebo Durvalumab monotherapy (1,500 mg IV Q4W in combination with placebo saline solution IV Q4W for up to 4 doses/cycles each, followed by durvalumab 1,500 mg Q4W); first durvalumab dose will be 4 wk after final dose of durvalumab in combination with placebo saline solution	Durvalumab IV Placebo IV
Experimental: durvalumab + tremelimumab Durvalumab in combination with tremelimumab: durvalumab (1,500 mg IV) Q4W in combination with tremelimumab (75 mg IV) Q4W for up to 4 doses/cycles each, followed by durvalumab 1,500 mg Q4W; first durvalumab dose will be 4 wk after final dose of durvalumab in combination with tremelimumab	Durvalumab IV Tremelimumab IV
Comparator: placebo + placebo Placebo: placebo saline solution (IV) Q4W in combination with a second placebo saline solution (IV) Q4W for up to 4 doses/cycles each, followed by a single placebo saline solution Q4W; first placebo saline solution monotherapy dose Q4W will be 4 wk after the final dose of the 2 placebo saline solutions in combination	Placebo IV

Durva, durvalumab; IV, intravenously; Q4W, every 4 weeks; SCLC, small cell lung cancer; treme, tremelimumab. 1. https://clinicaltrials.gov/ct2/show/NCT03703297.
Tiragolumab + Atezolizumab in NSCLC and SCLC¹

Anti-TIGIT mAb

- Fully human IgG1/kappa Ab with intact Fc region that blocks the binding of TIGIT to PVR
- Could restore antitumor response and could complement the activity of anti–PD-L1/PD-1 antibodies

Randomized Phase 3 (CITYSCAPE) in 1L NSCLC

- Tiragolumab + atezolizumab showed clinically meaningful improvement in ORR and PFS in the ITT population with a greater magnitude of improvement in the PD-L1 TPS ≥50% subgroup
- Tiragolumab + atezolizumab was well tolerated with a safety profile similar to the control arm

PeerView.com

 Phase 3 in 1L PD-L1 + NSCLC (SKYSCRAPER-01), 1L ES-SCLC (SKYSCRAPER-02), and stage III NSCLC (SKYSCRAPER-03) ongoing

1L, first line; Ab, antibody; CI, confidence interval; ES-SCLC, extensive-stage small cell lung cancer; Fc, fragment crystallizable; HR, hazard ratio; IgG1, immunoglobulin G1; ITT, intent to treat; mAb, monoclonal antibody; NE, not evaluable; NSCLC, non-small cell lung cancer; ORR, objective response rate; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; PFS, progression-free survival; PVR, poliovirus receptor; SCLC, small cell lung cancer; TIGIT, T-cell immunoreceptor with Ig and ITIM domains; TPS, tumor proportion score. 1. Rodriguez-Abreu D et al. ASCO 2020. Abstract 9503.

Trilaciclib¹

- Data pooled from patients enrolled in the studies are outlined in the table below
 - In each study, patients received IV trilaciclib 240 mg/m² or placebo on each day prior to chemo administration

Study	Patient Population	Treatment Schedule
G1T28-02 (NCT0249970)	1L ES-SCLC	Trilaciclib or placebo on d 1-3 of each 21-d EP cycle
G1T28-05 (NCT03041311)	1L ES-SCLC	Trilaciclib or placebo on d 1-3 of each 21-d EPA cycle for up to 4 cycles (induction), followed by A every 21 d (maintenance)
G1T28-03 (NCT02514447)	2/3L ES-SCLC	Trilaciclib or placebo on d 1-5 of each 21-d topotecan cycle

- Effect of trilaciclib evaluated in terms of myelopreservation and antitumor efficacy
 - Primary myelopreservation endpoints were duration of grade 4 neutropenia in cycle 1 and occurrence of severe neutropenia across the treatment period
 - > Secondary myelopreservation endpoints were assessed by hematopoietic lineage
- Antitumor efficacy measures included ORR, PFS, and OS

A, atezolizumab; Chemo, chemotherapy; EP, etoposide and carboplatin; EPA, etoposide, carboplatin, and aztezolizumab; ES-SCLC, extensive-stage small cell lung cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival.

1. Weiss J et al. American Association for Cancer Research Annual Meeting 2020 (AACR 2020). Poster 384.

PeerView.com

Myelopreservation Endpoints in the Pooled Efficacy Analysis¹

Myelopreservation efficacy of trilaciclib administered before chemo

- Addition of trilaciclib before chemo significantly decreased most measures of multilineage CIM and the need for supportive care interventions
- The primary endpoints of DSN in cycle 1 (a surrogate for febrile neutropenia and infections) and occurrence of SN were both significantly reduced with trilaciclib vs placebo
- Mean (SD) DSN was 0 (1.8) days with trilaciclib vs 4 (5.1) days with placebo (P < .0001)

PeerView.com

Chemo, chemotherapy; CIM, chemotherapy-induced myelosuppression; DSN, duration of severe neutropenia; ESA, erythropoietin-stimulating agent; G-CSF, granulocyte colony-stimulating factor; RBC, red blood cell; SD, standard deviation; SN, severe neutropenia. 1. Weiss J et al. AACR 2020. Poster 384.

Conclusions

- Significant innovations in treatments—immunotherapies in particular—have helped make progress against SCLC as a recalcitrant cancer in the past 5 years
- There continues to be progress with focus on incorporating immunotherapy in early-stage disease
- There are unique immunotherapy combinations and other novel agents under investigation
- Total cost-of-care models and value-based frameworks are lacking for this dramatically underserved malignancy to help patients, providers, pharmacists, and payors in choosing appropriate cost-effective treatments, as the market is forecasted to grow to \$3.8 billion by 2028

What role will immunotherapy biomarkers have in the future for small cell lung cancer?

In your experience, what is the level of interest for outcomebased contracts among oncology products and manufacturers? Do you anticipate this changing in the future?

