Variable Effects of Omega-3 Fatty Acids for ASCVD Event Reduction: Why?

These slides are meant to be used as an accompaniment to the presentation for note taking purposes. They are not intended as a standalone reference.

REDUCE-IT Primary and Secondary Endpoints

Key Secondary Endpoint

Primary Endpoint

Key Inclusion Criteria (n = 8,179)

- Statin-treated men and women ≥45 yrs
- Established CVD (~70% of patients) or DM + ≥1 risk factor
- TG ≥150 mg/dL and <500 mg/dL
- LDL-C >40 mg/dL and ≤100 mg/dL

Bhatt DL, et al. N Engl J Med. 2019;380(1):11-22. Bhatt DL. AHA 2018, Chicago.

medtelligence[®]

STRENGTH Trial Design, Details, and Primary Endpoint

- Randomized 13,078 patients Oct 2014 June 2017 (675 sites, 22 countries)
- Statin-treated adult patients (≥18 years) were included who had triglyceride 180-499 mg/dL, and HDL-C <42 mg/dL for men or <47 mg/dL for women
 - Presence of established ASCVD
 - Type 1 or 2 diabetes ≥ 40 years for men and ≥50 years for women with at least 1 additional risk factor
 - High-risk primary prevention patients aged ≥50 years for men or
 ≥60 years for women with at least 1 additional risk factor
- Trial stopped by data monitoring board for "futility" Jan 8, 2020, after review of 1,384 MACE outcomes
- 1,580 MACE endpoints accrued by last patient visit May 14, 2020
- Median follow-up time 42.0 months, and study drug 38.2 months

medtelligence

Primary endpoint:

MACE (CV death, MI, stroke, coronary revascularization, or hospitalization for unstable angina)

Lincoff AM. American Heart Association Virtual Scientific Sessions; November 15, 2020. Nicholls SJ, et al. JAMA. 2020;324(22):2268-2280.

Comparison Between REDUCE-IT and STRENGTH

Trial (% of patients with	Groups	Patients with event/total patients, n/N (%)		Hazard ratio (05% CI)
disease at baseline)	Groups	Omega-3	Placebo	Hazaru fallo (95 % Cl)
REDUCE-IT (70.7%)		Icosapent ethyl	Mineral oil	
	All participants	705/4089 (17.2%)	901/4090 (22%)	0.75 (0.68–0.83)*
	Primary prevention	146/1197 (12.2%)	163/1197 (13.6%)	0.88 (0.70–1.10)
	Secondary prevention	559/2982 (19.3%)	738/2893 (25.5%)	0.73 (0.65–0.81)
STRENGTH (56%)		Eicosapentaenoic acid + Docosahexaenoic acid	Corn oil	
	All participants	785/6539 (12%)	795/6539 (12.2%)	0.99 (0.90–1.09)
	Primary prevention	216/2901 (7.4%)	185/2861 (6.5%)	1.16 (0.95–1.41)
	Secondary prevention	569/3638 (15.6%)	610/3678 (16.6%)	0.94 (0.84–1.05)

REDUCE-IT indicates Reduction of Cardiovascular Events with Icosapent Ethyl—Intervention Trial; and STRENGTH, Long-Term Outcomes Study to Assess Statin Residual Risk with Epanova in High Cardiovascular Risk Patients with Hypertriglyceridemia. **P*<0.001.

Pirillo A and Catapano AL. Circulation. 2021;144:183-185. DOI: 10.1161/CIRCULATIONAHA.121.053144.

Controversy About STRENGTH and REDUCE-IT

- STRENGTH had a triglyceride range of 180-499 mg/dL
- REDUCE-IT had a triglyceride range of 150-499 mg/dL
- REDUCE-IT used mineral oil as the placebo that was endorsed by the FDA
- Some raised concern that mineral oil may have a negative effect on CV health
- Mineral oil has been used as a lubricant laxative for years

Nicholls SJ, et al. JAMA. 2020;324(22):2268-2280. Bhatt DL, et al. N Engl J Med. 2019;380(1):11-22.

Controversy About STRENGTH and REDUCE-IT

- Review of 80 clinical studies that used some form of mineral oil as a placebo¹
 - Lack of absorption interference
 - Lack of effects on:
 - > Blood lipids
 - > Inflammatory markers
 - > Blood pressure
- STRENGTH used corn oil as the placebo
- Mineral oil was reviewed extensively by the FDA, Health Canada, and the European Medicines Agency

Baseline and Achieved EPA Levels in Omega-3 CVOTs: Cross-Study Comparison

Plasma and serum EPA levels have been strongly correlated, with plasma levels being slightly higher than serum levels^{4,5}

medtelligence

1. Nicholls SJ, et al. *JAMA*. 2020;324(22):2268-2280. 2. Itakura H, et al. *J Atheroscler Thromb*. 2011;18(2):99-107. 3. Bhatt DL, et al. ACC 2020 Scientific Session (ACC.20)/World Congress of Cardiology (WCC); March 30, 2020. Abstract 20-LB-20501-ACC. 4. Dunbar RL, et al. Poster presented at the Gordon Conference on Atherosclerosis; Newry, Maine; June 16-21, 2019. 5. Dunbar RL, et al. Poster presented at NLA Scientific Sessions; December 9-12, 2020.

MACE: Top Tertile of Achieved EPA and DHA

Nissen S. ACC Virtual 2021.

Baseline and Achieved EPA Levels in Omega-3 CVOTs: Cross-Study Comparison

Plasma and serum EPA levels have been strongly correlated, with plasma levels being slightly higher than serum levels^{4,5}

medtelligence

1. Nicholls SJ, et al. *JAMA*. 2020;324(22):2268-2280. 2. Itakura H, et al. *J Atheroscler Thromb*. 2011;18(2):99-107. 3. Bhatt DL, et al. ACC 2020 Scientific Session (ACC.20)/World Congress of Cardiology (WCC); March 30, 2020. Abstract 20-LB-20501-ACC. 4. Dunbar RL, et al. Poster presented at the Gordon Conference on Atherosclerosis; Newry, Maine; June 16-21, 2019. 5. Dunbar RL, et al. Poster presented at NLA Scientific Sessions; December 9-12, 2020.

STRENGTH (median patient

follow-up was 42.0 months)	Omega-3 CA (N = 6,532)	Placebo (N = 6,535)	-
Gastrointestinal disorders	1616 (24.7%)	959 (14.7%)	=
Diarrhea	780 (11.9%)	323 (4.9%)	
Dyspepsia	90 (1.4%)	42 (0.6%)	
Nausea	207 (3.2%)	113 (1.7%)	
Abdominal discomfort	87 (1.3%)	36 (0.6%)	
Bleeding-related disorders	322 (4.9%)	322 (4.9%)	
TEAE leading to withdrawal of study drug	708 (10.8%)	525 (8.0%)	
Atrial fibrillation	144 (2.2%)	86 (1.3%)	

REDUCE-IT (median patient fallow up was 58.8 months)

follow-up was 58.8 months)	Icosapent Ethyl (N = 4,089)	Placebo (N = 4,090)
Gastrointestinal disorders	1350 (33.0%)	1437 (35.1%)
Diarrhea	367 (9.0%)	453 (11.1%)
Constipation	221 (5.4%)	149 (3.6%)
Nausea	190 (4.6%)	197 (4.8%)
Gastroesophageal reflux disease	124 (3.0%)	118 (2.9%)
Bleeding-related disorders	111 (2.7%)	85 (2.1%)
TEAE leading to withdrawal of study drug	321 (7.9%)	335 (8.2%)
Atrial fibrillation	215 (5.3%)	159 (3.9%)

CA, carboxylic acid; TEAE, treatment-emergent adverse events. Nicholls SJ, et al. JAMA. 2020;324(22):2268-2280. Bhatt DL, et al. N Engl J Med. 2019;380(1):11-22.

What Have We Learned From the Marine Omega-3 Fatty Acid Clinical Trials?

Supplements/Iow-dose EPA/DHA:	<i>Does Not</i> Reduce CVD Risk	
Intermediate-dose EPA/DHA:	Does Not Reduce CVD Risk	
High-dose EPA/DHA:	Does Not Reduce CVD Risk	
Intermediate-dose EPA only:	Reduces CVD Risk	
High-dose EPA only:	Reduces CVD Risk	

Counseling Tips

Dietary supplements ARE NOT EQUAL to prescription omega-3

Dietary supplements

 All Rx is not equal (omega-3 acid ethyl esters are DHA/EPA while icosapent ethyl is EPA only

- MUST take 2g BID
- Decrease fishy burp concerns by storing in refrigerator
- Talk about safety concerns with the patient, then the provider

Rx