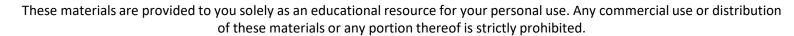
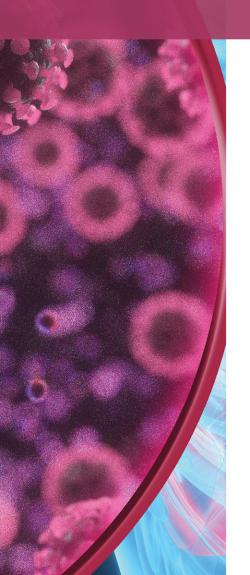


The Emerging Use of Immune Checkpoint Inhibitors in the Neoadjuvant Setting

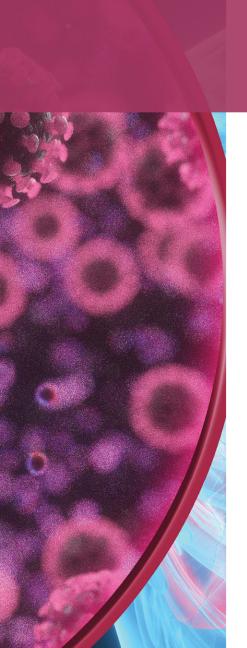
These slides are meant to be used as an accompaniment to the presentation for note taking purposes, they are not intended as a standalone reference.


This educational activity is sponsored by Postgraduate Healthcare Education, LLC and is supported by an educational grant from Bristol Myers Squibb.





Originally from Lake Charles, Louisiana, Dr. Land received his BS in Biology from McNeese State University and PharmD from the University of Louisiana at Monroe. He completed a PGY1 Pharmacy Practice Residency at The University of Texas MD Anderson Cancer Center in Houston followed by a PGY2 Oncology Pharmacy Specialty Residency at Memorial Sloan Kettering Cancer Center in New York City. Dr. Land currently practices as a clinical pharmacy specialist for the Thoracic Medical Oncology Service at Memorial Sloan Kettering Cancer Center and is a Board-Certified Oncology Pharmacist (BCOP).



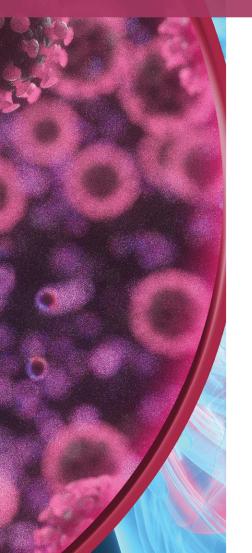
Disclosures

Dr. Land has disclosed that he has served on an advisory board for Bristol Myers Squibb.

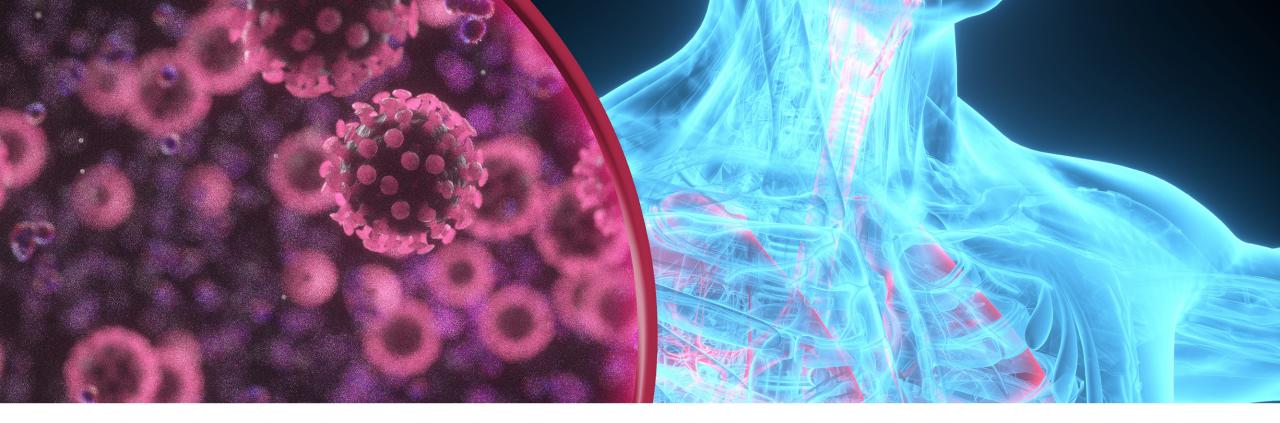
The clinical reviewer, **Lisa Holle, PharmD, BCOP, FHOPA, FISOPP**, has disclosed that she has no actual or potential conflicts of interest related to this program.

Susanne Batesko, RN, BSN, Robin Soboti, RPh, and Susan R. Grady, MSN, RN, as well as the planners, managers, and other individuals, not previously disclosed, who are in a position to control the content of Postgraduate Healthcare Education, LLC (PHE) continuing education (CE) activities, hereby state that they have no relevant conflicts of interest and no financial relationships or relationships to products or devices during the past 12 months to disclose in relation to this activity. PHE is committed to providing participants with a quality learning experience and to improve clinical outcomes without promoting the financial interests of a proprietary business.

Accreditation


Postgraduate Healthcare Education, LLC is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education.

UAN: 0430-0000-22-035-H01-P


Credits: 1.0 hours (0.1 CEUs)

Type of Activity: Application

- Identify potential predictive biomarkers and surrogate endpoints of neoadjuvant immunotherapy for non-small cell lung cancer (NSCLC)
- Discuss emerging clinical trial data and the rationale for using neoadjuvant immune checkpoint inhibitors for treatment of early-stage NSCLC
- Formulate approaches for mitigation of common toxicities associated with neoadjuvant immunotherapy for NSCLC

Neoadjuvant Therapy for Early-Stage NSCLC

Historical Perspectives

Lung Cancer

Leading cause of cancer mortality in the US and worldwide

- 235,760 cases in 2021
- 131,880 deaths in 2021
- 84% of cases = non-small cell lung cancer (NSCLC)

5-year survival = 19% for all patients

- Local disease = 61%
- Regional disease = 35%
- Advanced/metastatic = 6%

Ahren et al. J Immunother Cancer. 2021;9(6):e002248.

Cancer stat facts: lung and bronchus cancer. NCI/SEER. Accessed March 7, 2022. www.seer.cancer.gov

NSCLC: Staging

Staging Review

- Resectable disease
- Role for perioperative systemic therapy
 - Neoadjuvant vs adjuvant as a strategy to reduce the risk of recurrence

The goal of resectable NSCLC is **CURE**

T/M	Subgroup	N0	N1	N2	N3
T1	T1a	IA1	IIB	IIIA	IIIB
	T1b	IA2	IIB	IIIA	IIIB
	T1c	IA3	IIB	IIIA	IIIB
T2	T2a	IB*	IIB	IIIA	IIIB
	T2b	IIA	IIB	IIIA	IIIB
T3	T3	IIB	IIIA	IIIB	IIIC
T4	T4	IIIA	IIIA	IIIB	IIIC
M1	M1a	IVA	IVA	IVA	IVA
	M1b	IVA	IVA	IVA	IVA
	M1c	IVB	IVB	IVB	IVB

TMN, tumor-node-metastasis cancer staging system.

*consider high-risk features

Detterbeck. *J Thorac Cardiovasc Surg.* 2018;155(1):356. NCCN Clinical Practice Guidelines in Oncology. NSCLC, v3.2022.

Perioperative Chemotherapy for Resectable Disease: NCCN Recommendations

Surgery followed by chemotherapy (adjuvant)

- Not recommended for IA disease
- Consider for high-risk, margin-negative IB disease
- Fastest time to surgery
- Recommended for patients with completely resected stages IB-IIIA
- Cisplatin/pemetrexed = preferred regimen for nonsquamous histology
- Cisplatin/gemcitabine and cisplatin/docetaxel = preferred regimens for squamous histology

Preoperative chemotherapy followed by surgery (neoadjuvant)

- Delivery of chemotherapy can be complex in postsurgical setting
- Patient comorbidity or incomplete/lengthy postsurgical recovery
- Provides early opportunity to eliminate micrometastatic disease
- Benefit similar to adjuvant chemotherapy
- Response criteria considerations—can provide early indication of response
- Pathologic complete response (pCR) vs major pathologic response (MPR)

NCCN Clinical Practice Guidelines in Oncology. NSCLC, v3.2022.

Historical Adjuvant Trials

Study	No. Pts in CT Arm (N)	Median Age, Y	Stage: %	Adjuvant CT Regimen(s)	5-Y OS (CT vs control)	HR for OS (95% CI)	CT- Related Death, %
IALT	932 (1867)	59	I/II/III: 36/25/40	Cisplatin/vindesine, cisplatin/vinblastine, cisplatin/vinorelbine, or cisplatin/etoposide	44.5 vs 40.4	0.86 (0.76-0.98)	0.8
JBR.10	242 (482)	61	IB/IIA/IIB: 45/13/42	Cisplatin/vinorelbine	69 vs 54	0.69 (0.52-0.91)	0.8
ANITA	407 (840)	59	IB/II/IIIA: 36/22/41	Cisplatin/vinorelbine	62/52/42 vs 64/39/26	0.80 (0.66-0.96)	2.0
CALGB 9633	173 (344)	61	IB: 100	Carboplatin/paclitaxel	60 vs 58	0.83 (0.64-1.08)	0

Arriagada et al. *N Engl J Med*. 2004;350(4):351. Winton et al. *N Engl J Med*. 2005;352(25):2589. Douillard et al. *Lancet Oncol*. 2006;7(9):719. Strauss. *J Clin Oncol*. 2008;26(31):5043.

Historical Neoadjuvant Trials

Study	Size (N)	Stage	CT Regimen(s)	ORR, %	pCR, %	Complete Resection (Induction CT vs Surgery Alone)	Median OS (Induction CT vs Surgery Alone)
NATCH	413	IB-IIIA	Carboplatin + paclitaxel	53.3	10.5	NR	NR
SWOG 9900	354	IB-IIIA	Carboplatin + paclitaxel	41	9	93% vs 84%	62 mo vs 41 mo (HR 0.79, 95% CI, 0.60-1.06; <i>P</i> = .11)
Gilligan et al (2007)	519	IB-IIIA	Platinum-based	49	4	82% vs 80%	54 mo vs 55 mo (HR 2.01, 95% CI, 0.80-1.31; <i>P</i> = .86)
Scagliotti et al (2010)	270	IB-IIIA	Cisplatin + gemcitabine	35.4	4	88% vs 84%	93 mo vs 57 mo (HR 0.63, 95% CI, 0.43-0.92; <i>P</i> = .02)
Depierre et al (2002)	355	IB-IIIA	Cisplatin + ifosfamide	64	11	92% vs 86%	37 mo (95% CI, 26.7-48.3) vs 26 mo (95% CI, 19.8-33.6); P = .15 HR 0.78 (95% CI, 0.60-1.02)

CT, chemotherapy; NR, not reported; ORR, overall response rate; pCR, pathologic complete response.

Felip et al. *J Clin Oncol*. 2010;28(19):3138. Pisters et al. *J Clin Oncol*. 2010;28(11):1843. Gilligan et al. *Lancet*. 2007;369(9577):1929. Scagliotti et al. *J Clin Oncol*. 2012;30:172. Depierre et al. *J Clin Oncol*. 2002;20(1):247. Chen and Kewei. *Curr Oncol*. 2021;28(5):4129.

Historical Neoadjuvant Trials: Data from 3 Meta-Analyses

Study	No. of Trials (Pts)	Stage	CT Regimen(s)	Outcomes
Berghmans et al	6 (590)	1-111	Cisplatin-based	Overall HR 0.66 (95% CI, 0.48-0.93)
(2005)				Stage III HR 0.65 (95% CI, 0.41-1.04)
Burdett et al	12 (988)	1-111	Platinum-based	HR 0.82 (95% CI, 0.69-0.97; P = .02)
(2006)				OS of 20% at 5 years
Song et al	13 (3224)	1-111	Platinum-based	Overall HR 0.84 (95% CI, 0.77-0.92; <i>P</i> = .0001)
(2010)				Stage III HR 0.84 (95% CI, 0.75-0.95; <i>P</i> = .005)

Conclusion: Neoadjuvant CT added to surgery significantly improves OS in operable patients, including patients with stage III disease

Berghmans et al. *Lung* Cancer. 2005;49(1):13. Burdett et al. *J Thorac Oncol*. 2006;1(7):611. Song et al. *J Thorac Oncol*. 2010;5(4):510.

Pathologic Complete Response

Pathologic Complete Response (pCR)

- Absence of residual viable tumor cells on histopathologic examination after neoadjuvant chemotherapy
- Associated with improved survival
- Uncommon

- Median frequency in neoadjuvant trials:
 4% (range 0-16%)
- Rareness of pCR can limit conclusions on its relation to survival
- Although pCR is related to increased survival, meaningful survival data requires trials with large sample sizes
- Need for more effective therapies in neoadjuvant setting

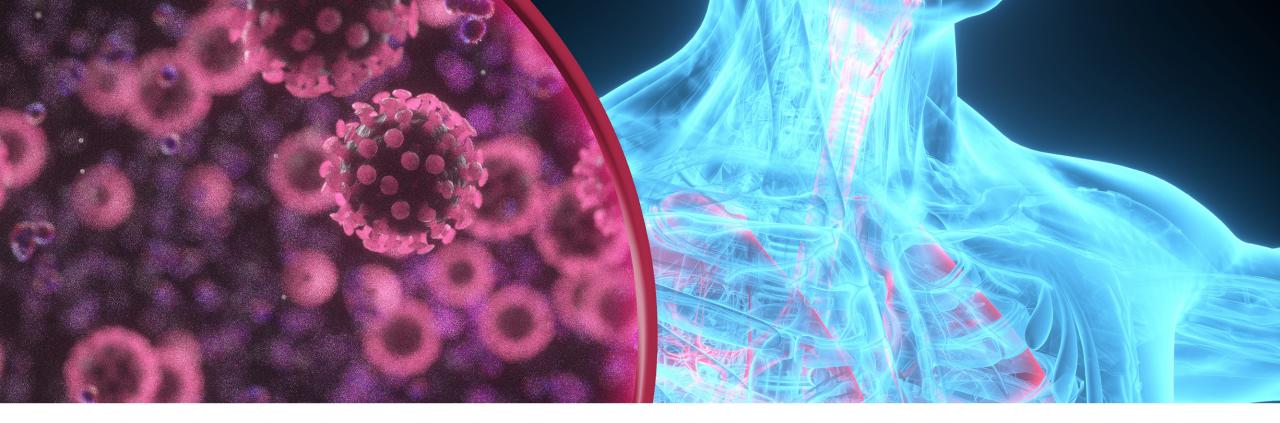
Major Pathologic Response


Major Pathologic Response (MPR)

- Residual viable tumor ≤10%
- A potential surrogate endpoint for survival as pCR can have limited utility
- Pataer et al (n = 192) showed improved survival in resected lung cancers treated with neoadjuvant CT in those meeting the definition of MPR

Percentage of Residual Viable Tumor Following Neoadjuvant CT	HR for Death
1-10%	1.00
11-30%	2.51 (95% CI, 0.91-6.96)
31-50%	3.39 (95% CI, 1.40-8.22)
51-70%	4.57 (95% CI, 1.98-10.52)
71-100%	4.78 (95% CI, 2.06-11.11)

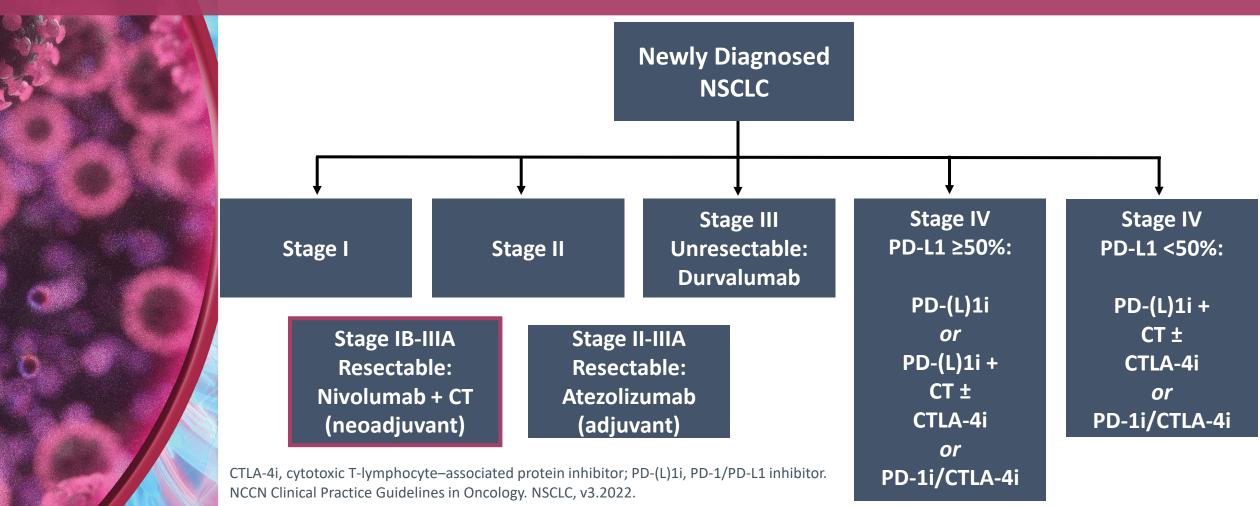
Pataer et al. *J Thorac Oncol*. 2020;16(5):1289. Hellmann et al. *Lancet Oncol*. 2014;15(1):e42.



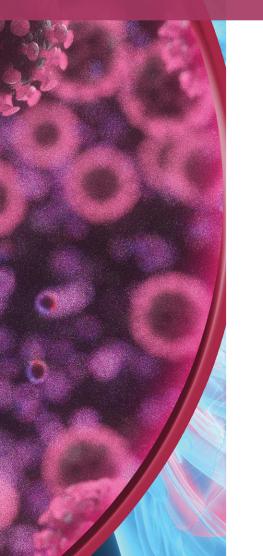
Perioperative Chemotherapy for Early-Stage NSCLC: Recent Progress

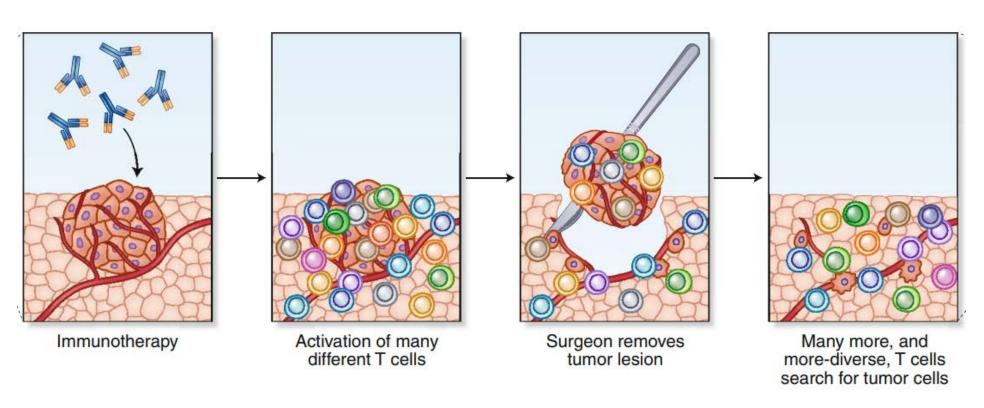
- The addition of immune checkpoint inhibition (ICI) improves outcomes in early-stage NSCLC
 - **PACIFIC** trial—consolidation durvalumab significantly improved OS at 5 years post-CCRT for locally advanced, unresectable stage III NSCLC
 - **IMpower010**—adjuvant atezolizumab improved DFS in stage IB-IIIA (primarily II-IIIA) NSCLC following surgery and adjuvant chemotherapy in tumors with PD-L1 ≥1%
- Is there a role for ICI in the **neoadjuvant space**?

CCRT, concurrent chemoradiotherapy; DFS, disease-free survival; PD-L1, programmed death-ligand 1.


Antonia et al. *N Engl J Med*. 2018;379(24):2342. Antonia et al. *N Engl J Med*. 2017;377(20):1919. Felip et al. *Lancet*. 2021;398:1344.

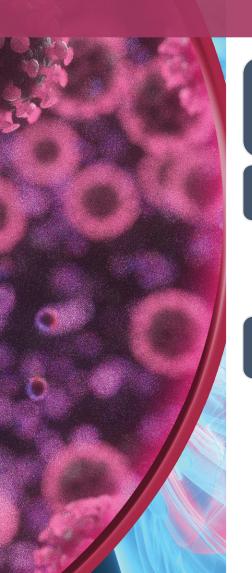
Neoadjuvant Therapy for Early-Stage NSCLC


Role of Immune Checkpoint Inhibition


Overview of ICI in NSCLC

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

Rationale for Neoadjuvant Immunotherapy



Versluis et al. *Nat Med*. 2020;26(4):475.

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

Historically, response rates with ICI therapy in NSCLC were around 20%—identification of biomarkers necessary to predict efficacy

Programmed death-ligand 1 (PD-L1)

- Heterogeneous biomarker
- Historically assessed in ICI trials for predictive role
- Utility as a biomarker varies from trial to trial—cutoff values from clinical trials may dictate therapy

Tumor mutation burden (TMB)

- Number of mutations per DNA megabases
- High TMB creates neoantigens/increases tumor immunogenicity
- Identified as a potential predictive biomarker based on efficacy in cancers with high TMB

Grellier et al. Transl Lung Cancer Res. 2018;7(6):4639.

Current Phase 2 Data: Neoadjuvant ICI in NSCLC

Study N Stages		Stages	Noordingent Dorimon		All Stages, %			
Study	IN	Stages	Neoadjuvant Regimen	MPR	pCR	ORR		
CheckMate 159	20	I-IIIA	Nivolumab x 2	45	10	10		
LCMC3	90	IB-IIIB	Atezolizumab x 2	19	5	7		
NEOSTAR Arm A Arm B	44	I-IIIA	Nivolumab x 3 Nivolumab/ipilimumab x 3	19 44	10 38	22 19		
Gao et al	40	IB-IIIA	Sintilimab x 2	37.5	7.5	20		
NADIM	46	IIIA	Nivolumab + carboplatin/paclitaxcel x 3	85	61	74		
Shu et al	14	IB-IIIA	Atezolizumab + carboplatin/nab-paclitaxcel x 2	63.6	27.3	57		
SAKK 16/14	55	IIIA	Cisplatin/docetaxel x 3, then durvalumab x 2	60	18	58		

MPR, major pathologic response; ORR, overall response rate; pCR, pathologic complete response.

Adapted from Palmero et al. Transl Lung Cancer Res. 2021;10(1):539.

Randomized, open-label, phase 3 trial

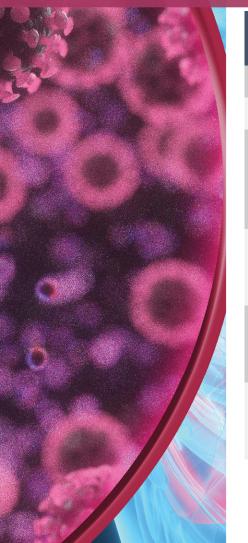
Stratified by stage (IB/II vs IIIA), PD-L1 (≥1% vs <1%), and sex **Radiologic Restaging** Nivolumab 360 mg Q3W + Newly diagnosed, CT Q3W x 3 cycles resectable, stage IB (n = 179)(≥4 cm) **Optional** Surgery to IIIA NSCLC;* Follow-up (within 6 wk adjuvant CT ± sensitizing EGFR post tx) RT mutation and ALK CT Q3W x 3 cycles alteration negative (n = 179)(N = 358)

*Per AJCC 7th ed cancer staging manual.

AJCC, American Joint Committee on Cancer; EFS, event-free survival;

RT, radiotherapy; tx, treatment.

Forde et al. AACR 2021. Abstract CT003.

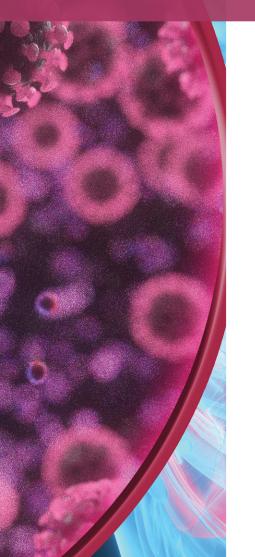

Primary endpoints: pCR, EFS

■ pCR = 0% viable tumor in lung/lymph nodes

Key secondary endpoints: OS, MPR, time-to-death or distant metastasis, potential predictive biomarkers (PD-L1, TMB)

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

CheckMate 816: Baseline Characteristics


Characteristic	Nivolumab + CT (n = 179)	CT (n = 179)
Median age, y (range)	64 (41-82)	65 (34-84)
Female, %	28	29
Region, % North America Europe Asia	23 23 48	28 14 51
Stage, % IB-II IIIA	36 63	35 64
Histology, % Squamous Nonsquamous	49 51	53 47
Smoking status, % • Current/former • Never	89 11	88 11

Characteristic	Nivolumab + CT (n = 179)	CT (n = 179)
Tumor PD-L1 expression, % ■ Not evaluable ■ <1% ■ ≥1% ■ 1-49% ■ ≥50%	7 44 50 28 21	7 43 50 26 24
TMB, % ■ Not evaluable/ not reported ■ <12.3 mut/Mb ■ ≥12.3 mut/Mb	51 27 22	50 30 21

mut/Mb, mutations per megabase; TMB, tumor mutation burden.

Forde et al. AACR 2021. Abstract CT003.

Patients, n (%)	Nivolumab + CT (n = 179)	CT (n = 179)
Received neoadjuvant treatment	176 (98)	176 (98)
 Reason off neoadjuvant treatment Completed (3 cycles) Study drug toxicity Disease progression Other 	165 (94) 10 (6) 1 (1) 0	149 (85) 12 (7) 2 (1) 13 (7)
Patients with definitive surgery Type of surgery Lobectomy Pneumonectomy Other R0 resection (negative margins)	149 (83) 115 (77) 25 (17) 29 (19) 124 (83)	135 (75) 82 (61) 34 (25) 35 (26) 105 (78)

R0, resection for cure or complete remission.

Forde et al. AACR 2021. Abstract CT003.

Definitive Surgery Rate: 83.2% vs 75.4%

Overall Response Rate: 53.6% vs 37.4%

Radiographic Downstaging: 30.7% vs 23.5%

Grade 3/4 Treatment-Related AE Rate: 33.5% vs 36.9%

AE, adverse event.

Spicer et al. ASCO 2021. Abstract 8503. NCT02998528.

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

CheckMate 816 Primary Endpoint: pCR Rate Nivolumab + CT vs CT Alone

Intent-to-Treat (ITT) Population

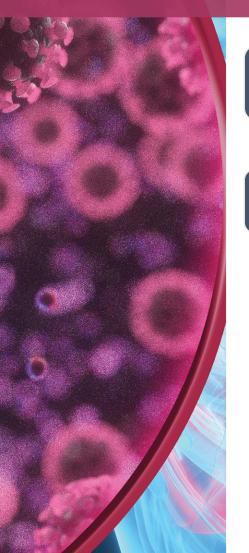
• 24% vs 2.2%, OR 13.94 (99% CI, 3.49-55.75); P < .0001

Key Subgroups

• Stage IB/II: **26% vs 5%**

• IIIA: 23% vs 1%

• PD-L1: <**1%** (17% vs 3%) and ≥**1%** (33% vs 2%)


• TMB: Low (22% vs 2%) and High (31% vs 3%)

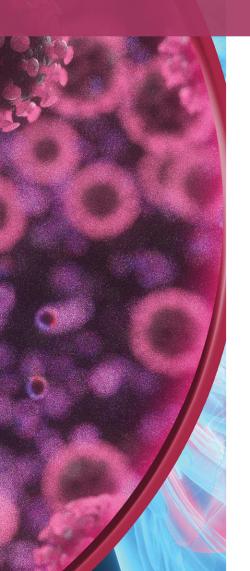
• MPR: **36.9% vs 8.9%**, OR 5.7 (95% CI, 3.16-10.26)

Forde et al. AACR 2021. Abstract CT003.

Spicer et al. ASCO 2021. Abstract 8503. NCT02998528.

Median Event-Free Survival (EFS), months

• **31.6 vs 20.8**, HR* 0.63 (97.38% CI, 0.43-0.91); *P* = .005


Median EFS: Key Subgroups, months

- Stage:
 - **IB/II**: NR vs HR (95% CI), 0.87 (0.48-1.56)
 - IIIA: 31.6 vs 15.7 HR (95% CI), 0.54 (0.37-0.80)
- TMB:
 - **Low** 30.5 vs 26.7 HR (95% CI), 0.86 (0.47-1.57)
 - **High** NR vs 22.4 HR (95% CI), 0.69 (0.33-1.46)

- PD-L1:
 - **<1%** 25.1 vs 18.4 HR (95% CI), 0.85 (0.54-1.32)
 - ≥1% NR vs 21.1 HR (95% CI), 0.41 (0.24-0.70)
 - **1-49%** NR vs 26.7 HR (95% CI), 0.58 (0.30-1.12)
 - ≥**50%** NR vs 19.6 HR (95% CI), 0.24 (0.10-0.61)

HR, hazard ratio; NR, not reached.

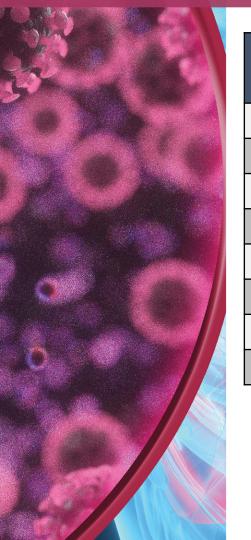
^{*}HR for disease progression, disease recurrence, or death. Forde et al. N Engl J Med. 2022 April 11. Online ahead of print. doi:10.1056/NEJMoa2202170

CheckMate 816: EFS/OS Data

Median EFS, months by pCR status (exploratory)

- Nivolumab + CT
 - pCR vs no pCR: NR vs 26.6, HR 0.13 (0.05-0.37)
- CT only
 - pCR vs no pCR: NR vs 18.4, HR not computed

Overall Survival, months (interim analysis)


• Nivolumab + CT: NR

• CT only: NR

HR (99.67% CI), 0.57 (0.30-1.07); P = .0079

Significance boundary for OS (0.0033) not met at time of interim analysis

Advance Event (AE) 0/	Nivolumab	o + CT* (n = 176)	CT (n = 176)		
Adverse Event (AE), %	Any Grade	Grade 3/4	Any Grade	Grade 3/4	
Any AE	93	41	97	44	
Treatment-related AE	82	34	89	37	
Any AE leading to d/c	10	6	11	4	
Treatment-related AE leading to d/c	10	6	10	3	
Any serious AE	17	11	14	10	
Treatment-related serious AE	12	8	10	8	
Surgery-related AEs	42	11	47	15	
Treatment-related deaths (n)		0		3	

^{*}irAEs in Nivolumab + CT arm: rash, hyperthyroidism, hypothyroidism, diabetes, hypophysitis, adrenal insufficiency, pneumonitis, hypersensitivity/IRR.

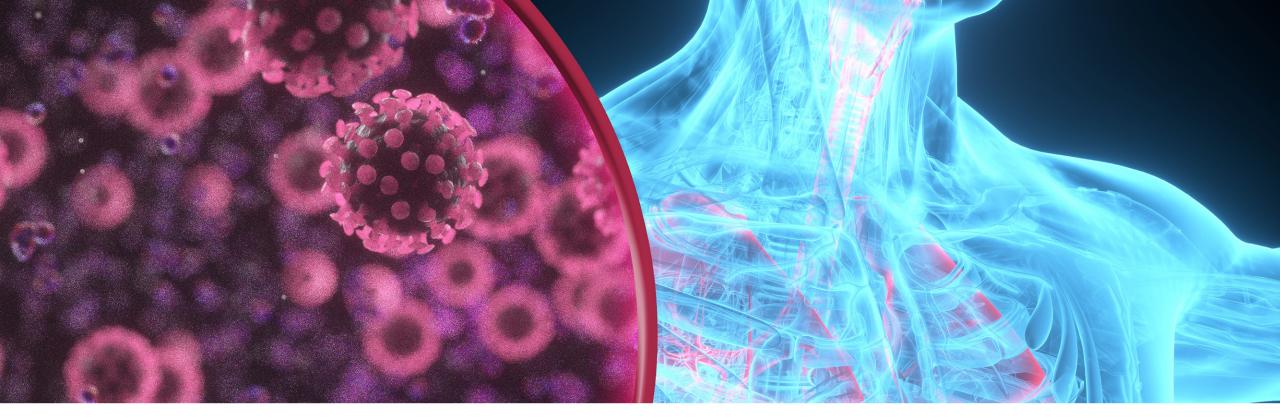
d/c, discontinuation; irAE, immune-related adverse events; IRR, infusion-related reaction.

Forde et al. AACR 2021. Abstract CT003.

CheckMate 816 showed a statistically significant improvement in the primary endpoints of pCR and EFS

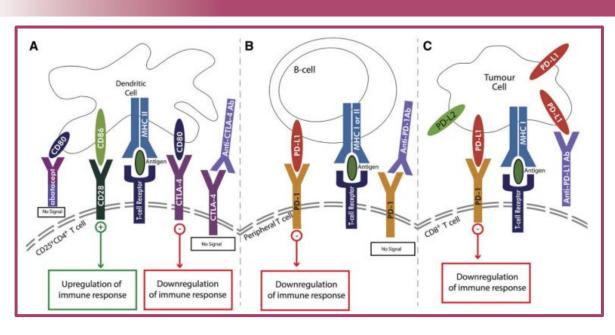
- pCR and EFS benefit consistent across most subgroups
 - MPR and ORR also improved
- Circulating tumor DNA (ctDNA) clearance more frequent with nivolumab + CT vs CT
- OS data maturing, although promising at interim analysis

Tolerable safety profile with addition of nivolumab without adversely affecting feasibility of surgery

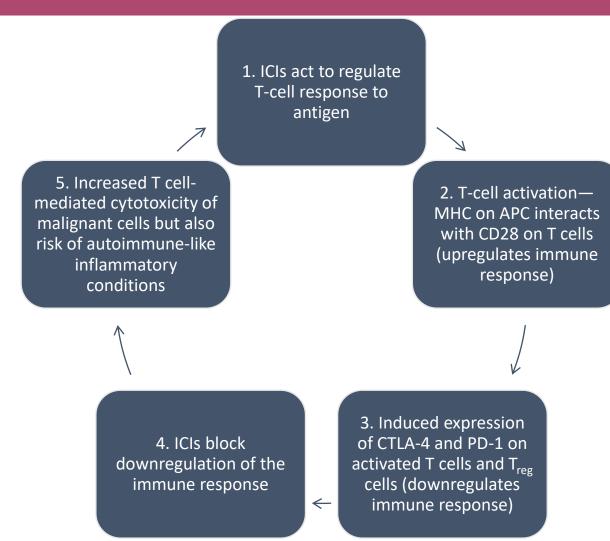

On March 4, 2022, the FDA approved nivolumab + CT for adult patients with resectable NSCLC in the neoadjuvant setting

Ongoing Phase 3 Trials of Neoadjuvant CT + ICI in Early-Stage NSCLC

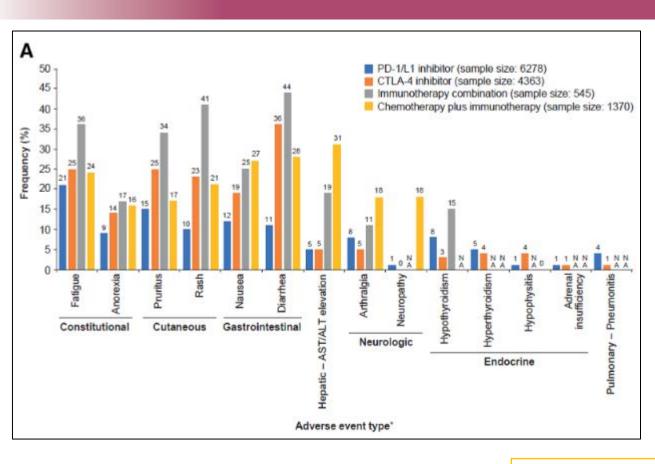
Study Title (Planned Accrual)	Disease Stage (TNM Edition)	CT Regimen	Neoadjuvant ICI	Adjuvant IO Treatment	Primary Endpoint(s)
KEYNOTE-671 (N = 786)	II-IIIB (8th)	≥4 cycles of cis/gem or pemetrexed	Pembrolizumab or placebo	13 x 3-wk cycles of pembrolizumab or placebo	EFS, OS
IMpower030 (N = 451)	II-IIIB (8th)	4 cycles of carbo/pemetrexed, carbo/nab-pac, cis/pemetrexed, or cis/gem	Atezolizumab or placebo	16 x 3-wk cycles of atezolizumab or BSC	EFS
AEGEAN (N = 800)	IIA-IIIB (8th)	4 cycles of carbo/pac, carbo/pemetrexed, cis/gem, or cis/pemetrexed	Durvalumab or placebo	12 x 4-wk cycles of durvalumab or placebo	pCR, EFS
CheckMate 77T (N = 452)	IIA-IIIB (8th)	≥4 cycles carbo/pac, cis/doc, carbo/pemetrexed, cis/pemetrexed	Nivolumab or placebo	Nivolumab or placebo for 1 y IO, immunotherapy; BSC,	EFS best supportive care.


NCT03425643. NCT03456063. NCT03800134. Heymach et al. *J Thorac Oncol.* 2019;14:S625. Abstract P1.18-02. NCT04025879. Gray et al. FLASCO Spring Session 2021. Poster.

Neoadjuvant Therapy for Early-Stage NSCLC


Managing Immune-Related Adverse Events

Immune-Related Adverse Events (irAEs)


 irAEs are a consequence of enhanced T-cell activation by inhibition of CTLA-4 and/or PD-1

APC, antigen-presenting cell; CD28, cluster of differentiation 28; MHC, major histocompatibility complex; T_{reg} cells, regulatory T cells. Weinmann and Pisetsky. *Rheumatology (Oxford)*. 2019;58(suppl 7):vii59.

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

Frequency of irAEs

A: Any grade irAE

B: Grade 3/4 irAE

Types of irAEs

Dermatologic

- Rash
- Pruritus
- Stevens-Johnson syndrome/ Toxic epidermal necrolysis

Gastrointestinal

Diarrhea/colitis

Ocular

- Uveitis
- Dry eyes
- Optic neuropathy

Hepatic

- Hepatitis
- Transaminitis

Renal

- Nephritis
- Increased serum creatinine (SCr)

Pancreatic

- Acute pancreatitis
- Increased amylase/lipase

Central Nervous System

- Neuropathy
- Encephalopathy
- Guillain-Barré syndrome
- Myasthenia gravis

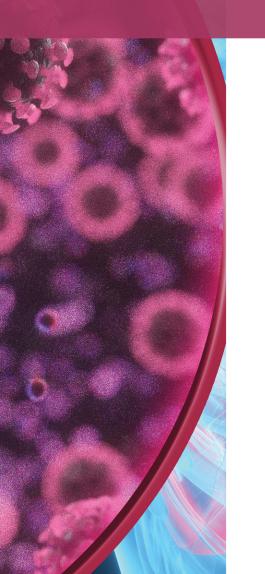
Endocrine

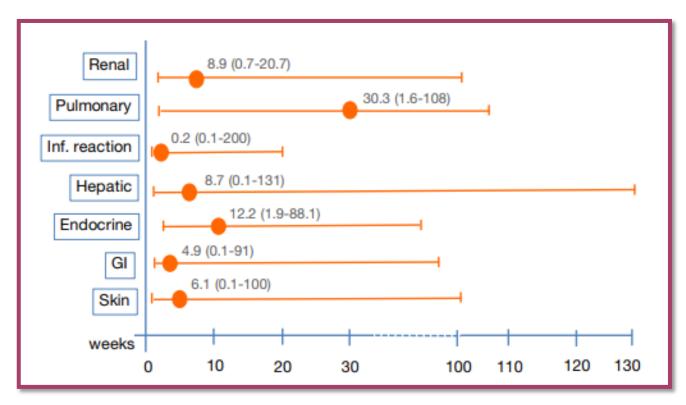
- Hyper/hypothyroidism
- Adrenal insufficiency
- Type 1 diabetes mellitus
- Hypophysitis

Cardiac

- Myocarditis/pericarditis
- Cardiomyopathy
- Cardiac arrest

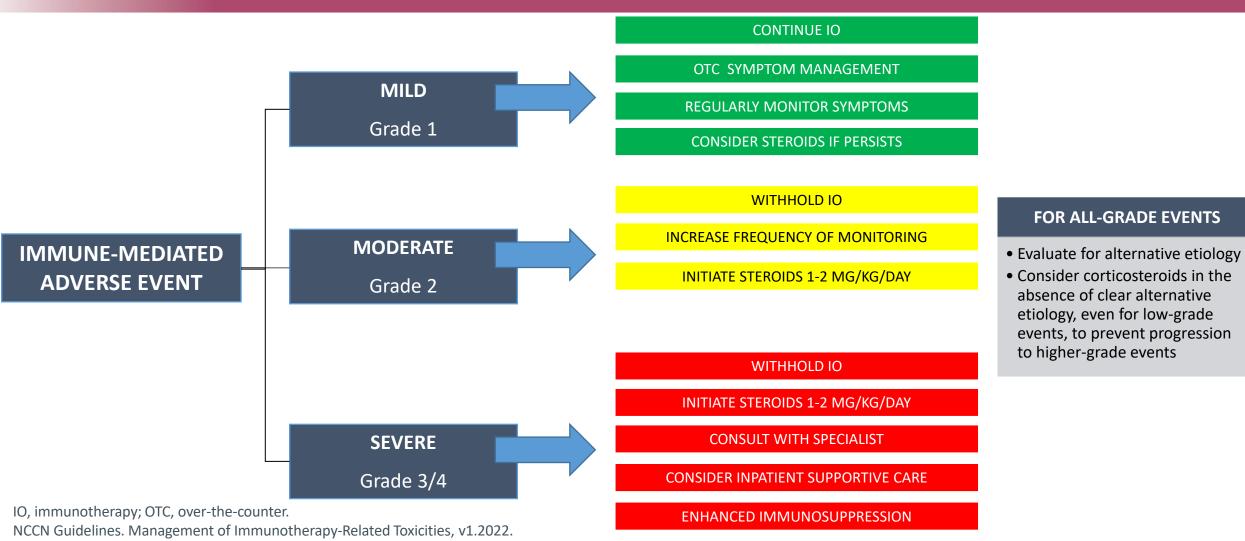
Pulmonary


Pneumonitis

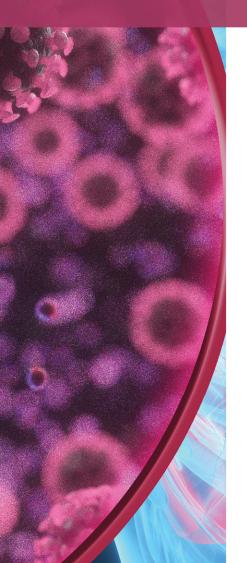

Musculoskeletal

- Myalgias/myositis
- Arthritis

NCCN Guidelines. Management of Immunotherapy-Related Toxicities, v1.2022.



Median time to onset of irAE for different toxicities with anti-PD-1 therapy in NSCLC Circles = medians, bars = ranges.


Remon et al. J Thorac Dis. 2018;10(suppl 13):S1516.

irAE Management Algorithm

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

Corticosteroids

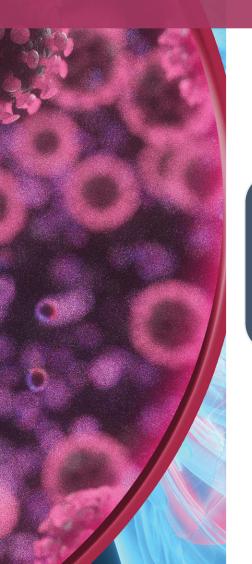
- Topical
- Oral
- Intravenous (IV)

Anti-TNF Agents

Infliximab

Anti-IL-6 Agents

• Tocilizumab


Other Immunosuppressants

- Mycophenolate mofetil
- Cyclosporine
- IV immunoglobulin (IVIG)
- Cyclophosphamide
- Rituximab
- Methotrexate/azathioprine
- Antithymocyte globulin (ATG)
- Vedolizumab

IL-6, interleukin-6; TNF, tumor necrosis factor.

NCCN Guidelines. Management of Immunotherapy-Related Toxicities, v1.2022.

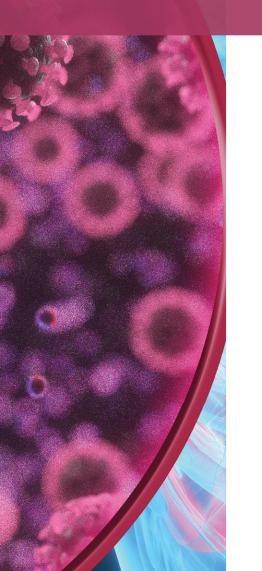
Consider consult with appropriate specialty service

Begin taper once irAE has resolved to appropriate grade

Tapers are patient specific but should generally occur over 4-6 weeks

Patient should contact oncologist if any symptoms worsen during taper

Prophylaxis Considerations


- H2RA/PPI
- PJP
- Antifungal
- Vitamin D/calcium

H2RA, histamine-2 receptor antagonist; PJP, *Pneumocystis jirovecii* pneumonia; PPI, proton pump inhibitor.

NCCN Guidelines. Management of Immunotherapy-Related Toxicities, v1.2022.

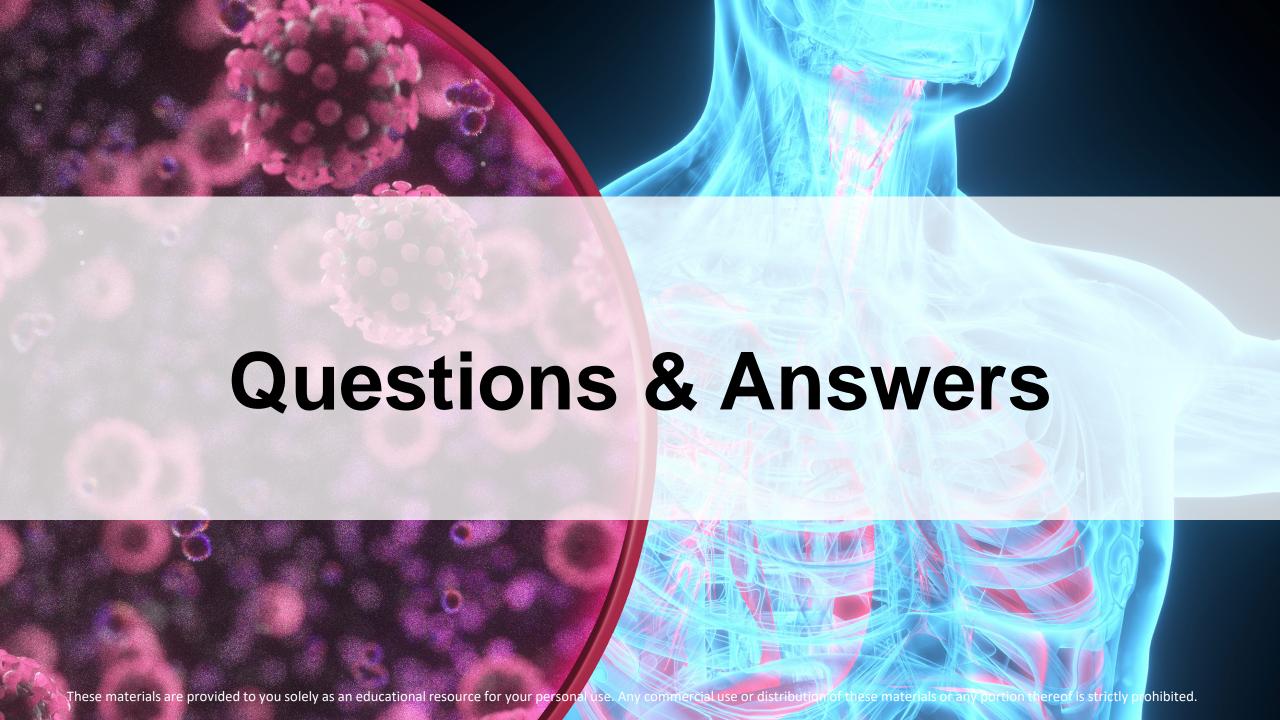
These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

irAE	Potential Intervention(s)
Pneumonitis	Infliximab 5 mg/kg IV (consider second dose at Day 14) Mycophenolate mofetil 1-1.5 g Q12H IVIG
Colitis	Infliximab 5 mg/kg IV at Week 0, 2, and 6 Vedolizumab 300 mg IV at Week 0, 2, and 6
Hepatitis	Mycophenolate mofetil 0.5-1 g Q12H *Do not use infliximab*

Prior to Starting ICI Therapy

NCCN Guidelines. Management of Immunotherapy-Related Toxicities, v1.2022.

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.


Conclusion

Perioperative chemotherapy historically improves outcomes in resectable NSCLC, particularly with respect to risk of recurrence and survival

The emerging role of immunotherapy in the resectable NSCLC space provides an opportunity to improve both pCR and MPR rates, which may translate to significant improvements in EFS

Nivolumab + chemotherapy is a newly FDA-approved option for neoadjuvant treatment of resectable stage IB-IIIA NSCLC

Pharmacists can play a vital role in educating, monitoring, and managing patients at risk for or who experience an irAE

