Frontline Treatment Approaches With Immune Checkpoint Inhibitors for Non-Small Cell Lung Cancer Updates on Evolving Strategies

These slides are meant to be used as an accompaniment to the presentation for note taking purposes, they are not intended as a standalone reference.

This educational activity is sponsored by Postgraduate Healthcare Education, LLC and is supported by an educational grant from Bristol Myers Squibb.

Faculty

Eve-Michelle Segal, PharmD, BCOP

Lead Clinical Pharmacist, Oncology Fred Hutchinson Cancer Center University of Washington Medical Center Seattle, WA

Dr. Segal is a Clinical Instructor at the University of Washington School of Pharmacy and the Lead Clinical Pharmacist for Hematology/Oncology Pharmacy at the University of Washington Medical Center/Fred Hutchinson Cancer Center in Seattle. Her primary responsibilities include collaborating with the medical oncology interprofessional team in the care of patients with solid tumor malignancies. Dr. Segal received her Doctor of Pharmacy degree from Massachusetts College of Pharmacy & Health Sciences in Boston, and completed a PGY1 Pharmacy Practice Residency at Norwood Hospital in Norwood, MA, and a PGY2 Oncology Pharmacy Practice Residency at St. Luke's Cancer Center in Boise, ID. She is also board certified in oncology.

Disclosures

Dr. Segal has disclosed that she has no actual or potential conflicts of interest related to this program.

The clinical reviewer, Lisa Holle, PharmD, BCOP, FHOPA, has disclosed that she has no actual or potential conflicts of interest related to this program.

Susanne Batesko, MSHE, BSN, RN, Robin Soboti, RPh, and Susan R. Grady, MSN, RN, as well as the planners, managers, and other individuals, not previously disclosed, who are in a position to control the content of Postgraduate Healthcare Education, LLC (PHE) continuing education (CE) activities, hereby state that they have no relevant conflicts of interest and no financial relationships or relationships to products or devices during the past 12 months to disclose in relation to this activity. PHE is committed to providing participants with a quality learning experience and to improve clinical outcomes without promoting the financial interests of a proprietary business.

All relevant financial relationships have been mitigated.

Accreditation

Postgraduate Healthcare Education, LLC is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education.

UAN: 0430-0000-23-041-H01-P **Credits:** 1.0 hours (0.1 CEUs) **Type of Activity:** Application

Learning Objectives

- Explain key takeaways from recent clinical trials involving frontline treatments with immune checkpoint inhibitors (ICIs) for non-small cell lung cancer (NSCLC)
- Discuss emerging treatment strategies and ongoing research aimed at optimizing outcomes for NSCLC patients on ICIs in the frontline setting
- Formulate approaches for effective patient management, including drug-drug interactions and mitigating immunerelated adverse events (irAEs) associated with ICIs in the frontline treatment of NSCLC

Session Overview

- Lung Cancer Epidemiology
- Staging
- Histology and Genetics
- Stage I
- Stage II/III
- Adjuvant Treatment for Stage II/III NSCLC
- Neoadjuvant Treatment for Stage II/III NSCLC
- Management of Inoperable Stage III NSCLC
- Management of Select Immune-Related Adverse Events (irAEs)
- Management of Emerging Drug-Drug Interactions (DDIs)

Session Overview

- Lung Cancer Epidemiology
- Staging
- Histology and Genetics
- Stage I
- Stage II/III
- Adjuvant Treatment for Stage II/III NSCLC
- Neoadjuvant Treatment for Stage II/III NSCLC
- Management of Inoperable Stage III NSCLC
- Management of Select irAEs
- Management of Emerging DDIs

Incidence and Epidemiology

- Estimated 236,740 new cases of lung cancer in 2022
- 5-year relative survival of 22.9%
 - Survival rate for early-stage NSCLC has been increasing
 - Patients with stage I, II, III disease at high risk for recurrence and death

Lung Cancer: Incidence and Survival

Stage	Frequency of Diagnosis (%)	5-Year Survival (%)
Localized	19	61.2
Regional	22	33.5
Distant	55	7
Unknown	4	9.9

Cancer stat facts: lung and bronchus cancer. SEER17 2012-2018. All races, both sexes by SEER Summary Stage. Accessed February 18, 2023. <u>https://seer.cancer.gov/statfacts/html/lungb.html</u> These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

NSCLC Staging

NSCLC: Stages and Definitions (AJCC V8)				
Stage Number	Definition			
Ι	 Minimally invasive, usually limited to primary lesion No nodal involvement Differences between stages IA-1B depend on size 			
II	 Larger tumor size N1 nodal involvement Tumor may have spread to lymph nodes (eg, hilar lymph nodes) 			
111	 Larger tumor (>5 cm), has grown into pleura N2 nodal involvement May have spread to other lymph nodes on other sides of the body 			
IV	Distant metastatic disease			

Image: Respiratory lymph nodes. © 2017 The American Cancer Society. Used with permission.

Pathology of Lung Cancers

- Non-small cell lung cancer (NSCLC) histology: 80% to 85% of all lung cancers
 - Adenocarcinoma: ≈ 40% of NSCLC, most common type in nonsmokers
 - Squamous cell carcinoma: 25% to 30% of NSCLC
 - Large cell carcinoma: 10% to 15% of NSCLC
- Small cell lung cancer (SCLC) histology: 10% to 15% of all lung cancers
 - Classic small cell carcinoma
 - Large cell neuroendocrine cancer
 - Combined small cell carcinoma
 - Typical carcinoid
 - Atypical carcinoid

Govindan R, et al. J Clin Oncol. 2006;24(28):4539-4544; Wahbah M, et al. Ann Diagn Pathol. 2007;11(2):89-96.

Determining Treatment for New Diagnosis of NSCLC

- Assess patient performance status
- Molecular and biomarker testing
 - Molecular profiling for oncogenic driver variants/sensitizing mutations such as EGFR, BRAF, ALK, MET, ROS1, RET, METex14, NTRK1/2/3
 - Immunohistochemistry (IHC) analysis testing for programmed death-ligand 1 (PD-L1) expression
- PD-L1 expression may be used as a biomarker to predict antitumor response and correlates to response rates up to 30%; may be imprecise
 - Shortcomings
 - Availability of assays to measure PD-L1
 - Variability of PD-L1 expression

Garinet S, et al. J Clin Med. 2018;7(6):144; Baumgart M. Am J Hematol Oncol. 2015;11(6):10-13; Davis AA, Patel VG. J Immunother Cancer. 2019;7(1):278; Sideway P. Nat Rev Clin Oncol. 2019;16(6):337.

Session Overview

- Lung Cancer Epidemiology
- Staging
- Histology and Genetics
- Stage I
- Stage II/III
- Adjuvant Treatment for Stage II/III NSCLC
- Neoadjuvant Treatment for Stage II/III NSCLC
- Management of Inoperable Stage III NSCLC
- Management of Select irAEs
- Management of Emerging DDIs

Approach to Stage I NSCLC

Patients With Surgically Resectable Disease

• Segmentectomy, wedge resection, lobectomy, or pneumonectomy with lymph node sampling

Patients With Inoperable Disease

• Radiation

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

Lackey A, Donington JS. Semin Intervention Radiol. 2013;30(2):133-140; Choi JI. Transl Lung Cancer Res. 2019;8(1):32-47.

Image: Mayo Clinic. Lung cancer surgery. Accessed February 18, 2023. <u>https://www.mayoclinic.org/diseases-conditions/lung-cancer/multimedia/lung-cancer-surgery/img-20006167</u> These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

Approach to the Treatment of Stage II/III NSCLC

EGFR+, epidermal growth factor receptor positive.

Session Overview

- Lung Cancer Epidemiology
- Staging
- Histology and Genetics
- Stage I
- Stage II/III
- Adjuvant Treatment for Stage II/III NSCLC
- Neoadjuvant Treatment for Stage II/III NSCLC
- Management of Inoperable Stage III NSCLC
- Management of Select irAEs
- Management of Emerging DDIs

Adjuvant Chemotherapy

- Pooled patient data from 5 studies of adjuvant cisplatin-based doublet chemotherapy following completelyresected patients after 1995 (N = 4584)
 - Regimens included: cisplatin + vinorelbine, cisplatin + etoposide, or cisplatin + vinca alkaloid
- 5-year absolute benefit of 5.4% from chemotherapy
 - 5.8% benefit in disease-free survival
- Benefit varied by stage
- Chemotherapy effect was higher in patients with better performance statuses

Category	Hazard Ratio (95% CI)
Sta	ige
IA	1.40 (0.95-2.06)
IB	0.93 (0.78-1.10)
II	0.83 (0.73-0.95)
III	0.83 (0.72-0.94)
Regi	men
Cisplatin + vinorelbine	0.8 (0.7-1.07)
Cisplatin + etoposide or vinca alkaloids	0.92 (0.8-1.07)
Cisplatin + other	0.97 (0.84-1.13)

Pignon J, et al. J Clin Oncol. 2008;26(21):3552-3559.

Immune Checkpoints and Cancer

- Immune homeostasis critical to survival
- Uncontrolled immune response can cause inflammation and autoimmune disease
- To prevent this, the immune system relies on checkpoints:
 - Programmed cell death-protein 1 (PD-1 or PD-L1)
 - Regulates T-cell activity within tissues and tumors
 - Examples: atezolizumab, pembrolizumab, nivolumab
 - Cytotoxic T-lymphocyte–associated protein 4 (CTLA-4)
 - Blocks signals initiated by T-cells and CD28
 - Examples: ipilimumab, tremelimumab
- Immune checkpoints help regulate immune homeostasis, chronic infections, and tumor antigens
 - Can be dysregulated by tumors, leading to immune resistance

Pardoll DM. Nat Rev Cancer. 2012;12(4):252-264; NCCN Guidelines for Non-Small Cell Lung Cancer. v2.2023.

Image: NCI Dictionary of Cancer Terms. National Cancer Institute. Accessed February 18, 2023. <u>https://www.cancer.gov/publications/dictionaries/cancer-terms/def/ctla-4</u> These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

IMpower010: Adjuvant Atezolizumab in Stage IB-IIIA NSCLC

Completely resected stage IB- IIIA NSCLC

- Stage IB tumors ≥4 cm
- ECOG PS 0-1
- Lobectomy/pneumonectomy
- Tumor tissue for PD-L1 analysis (N = 1280)

Stratification Factors

- Patient sex
- Stage (IB vs II vs IIIA)
- Histology
- PD-L1 TPS

Adjuvant chemotherapy* for 1-4 cycles (N = 1269)

*Cisplatin + pemetrexed, gemcitabine, docetaxel, or vinorelbine

Primary Endpoints

- Investigator-assessed DFS tested hierarchically
 - PD-L1 TC ≥1% stage II-IIIA population
 - All-randomized stage II-IIIA population
 - ITT population (stage IB-IIIA)

Key Secondary Endpoints

- OS in ITT population
- DFS in PD-L1 TC ≥50% stage II-IIIA population
- 3- and 5-year DFS in all 3 populations

DFS, disease-free survival; ECOG PS, Eastern Cooperative Oncology Group Performance Status; ITT, intent-to-treat; OS, overall survival; PD-L1, programmed death-ligand 1; TC, tumor cells; TPS, tumor proportion score.

Felip E, et al. Lancet. 2021;398(10308):1344-1357.

IMpower010: Results

IMpower010 Results for All-Randomized Stage II-IIIA and ITT Populations (Primary Endpoint) Median follow-up: 32.8 months (range 0.1-57.5)

Endpoint	Atezolizumab (N = 248)	BSC (N = 228)		
Median DFS (95% CI), months	NR (36.1, NE)	35.3 months (29.0, NE)		
Stratified HR (95%, CI)	0.66 (0.50, 0.88)			
<i>P</i> -value	0.004			
BSC, best supportive care; CI, confidence interval; DFS, disease-free survival; HR,				

hazard ratio; ITT, intent-to-treat; NE, not evaluable; NR, not reached.

Safety Summary for IMpower010 in the Safety Evaluable Population						
GradeAtezolizumab (N = 495)BSC (N = 495)						
Adverse event,	N (%)					
Any grade	459 (93)	350 (71)				
Grade 3-4	108 (22)	57 (12)				
Serious	87 (18)	42 (8)				
Grade 5	8 (2)	3 (1)				
Led to dose interruption of atezolizumab	142 (29)	-				
Led to discontinuation of atezolizumab	90 (18)	-				
Immune-related adverse	e events, N (%)					
Any grade	256 (52)	47 (9)				
Grade 3-4	39 (8)	3 (1)				
Required corticosteroids	60 (12)	4 (1)				
Led to discontinuation	52 (11)	0				

Felip E, et al. Lancet. 2021;398(10308):1344-1357.

PEARLS/KEYNOTE-091: Adjuvant Pembrolizumab in Stage IB-IIIA NSCLC

Eligible for Randomization Eligible for Registration No evidence of disease Confirmed stage IB Pembrolizumab 200 mg Q3W for ECOG PS 0-1 tumors ≥4 cm, II, or IIIA ≤18 administrations (~1 year) **PD-L1** Testing Adjuvant chemotherapy NSCLC per AJCC v7 (N = 590)Considered for stage IB **Complete surgical** R 1:1 Recommended for resection Placebo Q3W for stage II and IIIA Provision of tumor ≤18 administrations (~1 year) Limited to ≤ 4 cycles

Stratification Factors

Stage (IB vs II vs IIIA)

tissue for PD-L1 analysis

- PD-L1 TPS (<1% vs 1-49% vs ≥50%)
- Geographic region
- Received adjuvant chemotherapy • (Yes vs No)

Dual Endpoints

- DFS in the overall population
- DFS in the PD-L1 TPS ≥50% population

Secondary Endpoints

- DFS in PD-L1 TPS ≥1% population
- OS in the overall, PD-L1 TPS ≥50%, and PD-L1 TPS \geq 1% population

(N = 587)

- Lung cancer-specific survival in the overall population
- Safety

AJCC, American Joint Committee on Cancer; DFS, disease-free survival; ECOG PS, Eastern Cooperative Oncology Group Performance Status; OS, overall survival; PD-L1, programmed death-ligand 1; R: randomization; TPS, tumor proportion score.

O'Brien M, et al. Lancet Oncol. 2022;23(10):1274-1286.

PEARLS/KEYNOTE-091: Results

PEARLS/KEYNOTE-091 Results, DFS for the Overall Population (Primary Endpoint)					
Endpoint	Pembrolizumab (N = 590)	Placebo (N = 587)			
Median DFS* (95% CI), months	53.6 months (39.2, NR)	42.0 months (31.3, NR)			
Stratified HR (95%, CI)	0.76 (0.63, 0.91)				
P-value	0.0014				
*For patients with a TPS score of ≥50% (N = 168 in pembrolizumab arm vs 165 in placebo), DFS was NR in either group.					
CI, confidence interval; DFS, disease-free survival; HR, hazard ratio;					

Select Key Safety Results for PEARLS/KEYNOTE-091 in the Safety Evaluable Population

Adverse Event	Pembrolizumab (N = 580)					Placebo (N	N =581)	
Grade N (%)	1-2	3	4	5	1-2	3	4	5
Any	358 (62)	166 (29)	21 (4)	11 (2)	379 (65)	130 (22)	14 (2)	6 (1)
Pruritus	124 (21)	1 (<1)	0	0	72 (12)	2 (<1)	0	0
Hypothyroidism	119 (21)	1 (<1)	0	0	27 (5)	0	0	0
Arthralgia	104 (18)	4 (1)	0	0	74 (13)	1 (<1)	0	0
Diarrhea	99 (17)	7 (1)	0	0	81 (14)	2 (<1)	0	0
Fatigue	95 (16)	1 (<1)	0	0	86 (15)	3 (1)	0	0
Increased ALT	42 (7)	4 (1)	0	0	31 (5)	3 (1)	0	0
Increase AST	39 (7)	2 (<1)	0	0	28 (5)	4 (1)	0	0
Maculopapular rash	40 (7)	3 (1)	0	0	20 (3)	0	0	0
ALT, alanine aminotransferase; AST, aspartate aminotransferase.								

NR, not reached; TPS, tumor proportion score.

O'Brien M, et al. Lancet Oncol. 2022;23(10):1274-1286.

Session Overview

- Lung Cancer Epidemiology
- Staging
- Histology and Genetics
- Stage I
- Stage II/III
- Adjuvant Treatment for Stage II/III NSCLC
- Neoadjuvant Treatment for Stage II/III NSCLC
- Management of Inoperable Stage III NSCLC
- Management of Select irAEs
- Management of Emerging DDIs

Neoadjuvant Treatment for Early-Stage NSCLC

- Opportunity to eradicate micrometastases
- Can start systemic treatment faster with better treatment adherence
- Assess therapeutic response on surgical resection
- Reduce tumor burden before surgery ("downstage")
- Can eliminate/reduce risk of tumor cells being released into the body during surgery

Proceed to surgery faster

- No risk of presurgery complications from systemic therapy
- Potentially longer treatment durations, which may allow for better disease control
- Flexible timing of treatment after surgery, allowing for patients to recover
- Can eliminate microscopic cancer cells remaining after surgery

Desai A, et al. JAMA Oncol. 2022;8(9):1364.

CheckMate 816: Neoadjuvant Nivolumab + Platinum Chemotherapy

Stratification Factors

- Stage (IB/II vs IIIA)
- Sex
- PD-L1 TPS (≥1% and <1%)

Primary Endpoints

- Pathologic complete response (pCR)
- Event-free survival (EFS)

Key Exploratory Endpoints

- Overall response rate (ORR)
- Feasibility of surgery, peri- and postoperative, surgery-related adverse events
- **EFS:** time from randomization to 1) any progression of disease precluding surgery, 2) recurrence of disease after surgery, 3) progression of disease without surgery, 4) death due to any cause
- There was a third arm that evaluated ipilimumab + nivolumab, but it was closed early based on external data

ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor.

Forde P, et al. N Engl J Med. 2022;386(21):1973-1985.

CheckMate 816: Results

CheckMate 816 Results: EFS and pCR Median follow-up: 21 months (range 0.1–42 months)					
Endpoint	Nivolumab + Chemotherapy (N = 179)Chemotherapy (N = 179)				
Median EFS (95% CI), months	31.6 months (30.2, NR)	20.8 months (14, 26.7)			
Stratified HR for EFS (95%, CI)	0.63 (0.43, 0.91)				
P-value	0.005				
pCR	24% 2%				
OR for pCR (99%, CI)	13.94 (3.49-55.75)				
P-value	<0.001				
CI, confidence interval; EFS, event-free survival; HR, hazard ratio; NR, not reached; OR, odds ratio; pCR, pathologic complete response.					

CheckMate 816: Adverse Events								
Adverse Event	Nivolumab + (N =	Chemotherapy 176)	Chemotherapy Alone (N = 176)					
	Any Grade	Any Grade Grade 3 or 4		Grade 3 or 4				
Adve	rse events of	any cause, N	(%)					
All	163 (92.6)	72 (40.9)	171 (97.2)	77 (43.8)				
Leading to treatment discontinuation	18 (10.2)	10 (5.7)	20 (11.4)	7 (4)				
Serious	30 (17)	19 (10.8)	24 (13.6)	17 (9.7)				
Treatme	Treatment-related adverse events, N (%)							
All	145 (82.4)	59 (33.5)	156 (88.6)	65 (36.9)				
Leading to treatment discontinuation	18 (10.2)	10 (5.7)	17 (9.7)	6 (3.4)				
Serious	21 (11.9)	15 (8.5)	18 (10.2)	14 (8.0)				
Death	0		3 (1.7)					

Forde P, et al. N Engl J Med. 2022;386(21):1973-1985.

Practice-Related Questions as a Result of CheckMate 816

- Who should receive neoadjuvant treatment versus adjuvant treatment?
- Is pCR predictive of EFS?
- Can EFS be used as a surrogate endpoint for OS?
- 20% of patients in CheckMate 816 received adjuvant treatment, is that necessary?
- Who should get adjuvant therapy? How do we determine eligibility?
- Patients with sensitizing mutations were excluded. How do we ensure our patients get biomarker testing prior to treatment?
- Using this type of regimen requires multidisciplinary input, is this feasible in all centers?

Lovly CM. N Engl J Med. 2022;386(21):2050-2051.

Putting the Picture Together: Operable NSCLC

Sensitizing EGFR mutation (+): Treat with adjuvant chemotherapy followed by targeted therapy

Mutation (-), contraindications to immune checkpoint inhibitor (ICI): Treat with platinum doublet

Operable NSCLC

Mutation (-), no contraindications to ICI, PS 0-1: Consider adjuvant chemotherapy followed by ICI **after consultation with multidisciplinary team** Mutation (-), no contraindications to ICI, PS 0-1:

Consider neoadjuvant chemotherapy immunotherapy **after consultation with multidisciplinary team**. Additional systemic treatment may be needed following surgery

Adapted from: Yoon SM, et al. *World J Clin Oncol.* 2017;8(1):1-20; Ferro A, et al. *Cancers.* 2022;14(22)5700; Daly ME, et al. *J Clin Oncol.* 2022;40(12):1356-1384; Mielgo-Rubio X, et al. *Cancers (Basel).* 2021;13(19):4811.

Session Overview

- Lung Cancer Epidemiology
- Staging
- Histology and Genetics
- Stage I
- Stage II/III
- Adjuvant Treatment for Stage II/III NSCLC
- Neoadjuvant Treatment for Stage II/III NSCLC
- Management of Inoperable Stage III NSCLC
- Management of Select irAEs
- Management of Emerging DDIs

Treatment Strategies for Locally Advanced Disease in Inoperable Patients

• Which patients?

- Patients with unresectable disease
 - Larger tumors, multiple tumors, and/or nodal involvement
- Patients who are not surgical candidates

• Primary treatment

- Chemotherapy (platinum-based agent) + concurrent radiation
 - Rationale: Better regional and systemic disease control
 - Median PFS benefit: 8 months; 20% of patients are alive at 5 years
 - Induction chemotherapy can be considered if patient's tumor does not fit in radiation field

PFS, progression-free survival.

Costa GJ, et al. Ann Transl Med. 2018;6(suppl 1):S65; Johnson DH. Chest. 2000;117(4 suppl 1):123S-126S.

PACIFIC: Consolidation Durvalumab After Concurrent Chemoradiation (cCRT)

DoR: duration of response; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PROs: patient reported outcomes; TTDM, time-to-death or disease progression.

Antonia SJ, et al. N Engl J Med. 2018;379(24):2342-2350; Spigel DR, et al. J Clin Oncol. 2022;40(12):1301-1311.

PACIFIC: Results (5-Year Follow-up)

PACIFIC Trial: 5-Year Survival OS and PFS Survival Outcome (Primary Endpoints)		PACIFIC Select Safety Events (Based on original trial by Antonia et al)					
Median follow-up	: 34.2 months (range	e 0.2–74.7 months)		Durva	lumab 475)	Placebo	
Endpoint	(N = 473)	Placebo (N = 236)	Adverse Event	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4
OS	47.5 months 29.1 months			Adverse event	ts of any cause, I	N (%)	
Stratified HR for OS (95%, CI)	0.72 (0.59, 0.89)		All	460 (96.8)	145 (30.5)	222 (94.9)	61 (26.1)
PFS	16.9 months	5.6 months	Dyspnea	106 (22.3)	7 (1.5)	56 (23.9)	6 (2.6)
Stratified HR for PFS (95%, CI)	0.55 (0.45, 0.68)		Radiation pneumonitis	96 (20.2)	7 (1.5)	37 (15.8)	1 (0.4)
Estimated 5-year OS	42.9% (38.2, 47.4)	33.4% (27.3, 39.6)	Diarrhea	88 (18.5)	3 (0.6)	46 (19.7)	3 (1.3)
survival rates	22.10/ (20. 20. 2)	10% (12 C 25 2)	Pneumonia	63 (13.3)	21 (4.4)	18 (7.7)	9 (3.8)
survival rate	33.1% (28, 38.2)	19% (13.6, 25.2)	Pneumonitis	60 (12.6)	9 (1.9)	18 (7.7)	4 (1.7)
Cl, confidence interval; OS, overall survival; HR, hazard ratio; PFS, progression- free survival.		Arthralgia	59 (12.4)	0	26 (11.1)	0	
Spigel DR, et al. J Clin Onco	<i>l.</i> 2022;40(12):1301-1311.		Rash	58 (12.2)	1 (0.2)	12 (5.1)	0

Antonia SJ, et al. N Engl J Med. 2018;379(24):2342-2350.

Select Ongoing Phase II and III Trials

Study Title (Planned Accrual)	Status	Disease Stage	Chemotherapy Backbone (max 4 cycles)	Neoadjuvant Intervention	Adjuvant Treatment	Primary Endpoint(s)
IMpower030 (N = 450)	Active, not recruiting	II, IIIA, IIIB	Carboplatin, nab-paclitaxel, carboplatin/pemetrexed, cisplatin/pemetrexed, or cisplatin/gemcitabine	Atezolizumab or placebo	Atezolizumab or placebo Q3W x 16 cycles	EFS
KEYNOTE-671 (N = 786)	Active, not recruiting	II, IIIA, IIIB	Cisplatin/gemcitabine or cisplatin/pemetrexed	Pembrolizumab or placebo	Pembrolizumab or placebo Q3W x 13 cycles	EFS, OS
AEGEAN (N = 825)	Active, not recruiting	II, IIIA, IIIB	Carboplatin/paclitaxel, carboplatin/pemetrexed, cisplatin/gemcitabine, or cisplatin/pemetrexed	durvalumab or placebo	Durvalumab or placebo Q4W x 12 cycles	pCR, EFS
NADIM-II (N = 90)	Active, not recruiting	IIIA, IIIB	Paclitaxel/carboplatin	nivolumab or placebo	nivolumab Q4W x 6 cycles	pCR

EFS, event-free survival; pCR, pathologic complete response.

Impower030. NCT0456063. Accessed February 21, 2023. https://clinicaltrials.gov/ct2/show/NCT03456063

KEYNOTE-671. NCT03425643. Accessed February 21, 2023. https://clinicaltrials.gov/ct2/show/NCT03425643

AEGEAN. NCT03800134. Accessed February 21, 2023. https://clinicaltrials.gov/ct2/show/NCT03800134

NADIM II. NCT03838159. Accessed February 21, 2023. https://clinicaltrials.gov/ct2/show/NCT03838159

Session Overview

- Lung Cancer Epidemiology
- Staging
- Histology and Genetics
- Stage I
- Stage II/III
- Adjuvant Treatment for Stage II/III NSCLC
- Neoadjuvant Treatment for Stage II/III NSCLC
- Management of Inoperable Stage III NSCLC
- Management of Select irAEs
- Management of Emerging DDIs

Immune-Related Adverse Events (irAEs)

- Adverse effects associated with oncology immunotherapies
 - CTLA-4 inhibitors: increased grade 3 adverse effects
 - 20% incidence overall
 - Associated with colitis
 - PD-1/PD-L1 inhibitors: 10% to 13% incidence of irAEs
 - Associated with thyroiditis and pneumonitis
- Mechanism: removal of activation of autoreactive T cells, increased inflammatory cytokines, or generation of autoreactive antibodies

Kennedy LC, et al. J Natl Compr Canc Netw. 2019;17(6):750-757; Medina PJ, Adams VR. Pharmacotherapy. 2016;36(3):317-334; Postow MA, et al. N Engl J Med. 2018;378(2):158-168. These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

ICI Impact on Organ Systems

Pharmacist Involvement: irAE Management

- Early recognition
- Assess irAE severity: Common Terminology Criteria for Adverse Events (CTCAE)
- Consult specialists for complex management
- Use available guideline recommendations for management
 - National Comprehensive Cancer Network (NCCN)
 - European Society for Medical Oncology (ESMO)
 - American Society of Clinical Oncology (ASCO)
 - Prescribing information (PI)
- Educate patients on potential adverse effects

Puzanov I, et al. J Immunother Cancer. 2017;5(1):95; Medina PJ, et al. J Pharm Pract. 2020;33(3):338-349.

irAE Management: General Overview

Grade	Management of irAE	Concomitant Treatment With ICI	Management of Persistent or Refractory irAE		
1	Monitor	Continue	N/A		
2	Begin systemic steroids*	Consider holding, if holding resume when < grade 1	Systemic steroids		
3	Systemic steroids with prolonged taper >4 weeks	Hold or discontinue	Additional immunosuppression (eg, infliximab), d/c ICI		
4	Systemic steroids with prolonged taper >4 weeks	Discontinue (except for endocrine irAE)	Add additional immunosuppression		
 *Immunosuppressive Systemic Steroid Regimens: Methylprednisolone (IV) or prednisone (PO) 0.5 to 1 mg/kg/day Methylprednisolone (IV) or prednisone (PO) 1 to 2 mg/kg/day 					

Kennedy LC, et al. J Natl Compr Canc Netw. 2019;17(6):750-757; Postow MA, et al. N Engl J Med. 2018;378(2):158-168; Medina P, et al. J Pharm Pract. 2020;33(3):338-349; Schneider B, et al. J Clin Oncol. 2021;39(36):4073-4126.

irAE Management: Prevention and Management of AEs Related to Steroids

ASCO Guideline Recommendations

Pretreatment Considerations

- Baseline workup to include viral HBV and HCV. Consider testing for latent/active TB
- Patients with preexisting comorbid conditions (diabetes, HTN, HF, cataract, glaucoma, infection, or osteoporosis) should have condition managed before starting corticosteroids
- Ideal steroid dosing and duration is individualized by patient, ICI, and type of irAE
- Lowest dose of steroids should be used for shortest duration of time

Prevention of Opportunistic Infection

- Prophylaxis for opportunistic infection with PJP may be considered in those receiving prednisone equivalent of ≥20 mg/d for 4 or more weeks or >30 mg for 3 weeks or more
- Prophylactic fluconazole with prolonged steroid use (>12 weeks) remain unclear; refer to institutional guidelines
- Prophylaxis against herpes zoster reactivation may be offered to patients who have had zoster before and will be receiving corticosteroids

Monitoring for Adverse Effects

- Routinely ask and assess patient for adverse effects
- GI prophylaxis with PPI or H2 antagonist
- To limit bone loss, patients should receive adequate calcium, diarrhea, vitamin D, and weight-bearing exercises. Use bone-modifying agents in patients on steroids for >3 months

H2, histamine-2; HBV, hepatitis B virus; HCV, hepatitis C virus; HF, heart failure; HTN, hypertension; PJP, Pneumocystis jirovecii pneumonia; PPI, proton pump inhibitor; TB, tuberculosis.

Schneider B, et al. J Clin Oncol. 2021;39(36):4073-4126.

Background: Pneumonitis

- Rare and potentially life-threatening
 - 3 patients (2%) died on a phase 1 trial of nivolumab in NSCLC
 - 1 patient (0.2%) died during a phase 1 trial of pembrolizumab in NSCLC
- Incidence
 - ~3% in trials evaluating monotherapy
 - Incidence is higher in PD-1/PD-L1 than CTLA-4
 - ~5-10% in trials using combination therapy
 - Higher incidence in NSCLC than other tumor types
- Grade 3-4 pneumonitis (hypoxia or respiratory compromise) is uncommon
 - One of few irAEs associated with drug-related deaths

Gettinger SN, et al. J Clin Oncol. 2015;33(18):2004-2012; Garon EB, et al. N Engl J Med. 2015;372(21):2018-2028; Chuzi S, et al. Cancer Manag Res. 2017;9:207-213. These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

Management of irAEs: Pneumonitis

- Incidence <10%
- Median onset: 3 months
- Higher incidence in NSCLC
- Dyspnea
- Cough
- R/O Infection or PE

- Consider holding ICI
- Reassess in 1-2 weeks
 H&P
- Pulse oximetry (resting and with ambulation)
- Consider repeat chest CT scan in 3-4 weeks or as clinically indicated

- Hold ICI
- Consider pulmonary consultation
- Prednisone 1-2 mg/kg orally daily
- Monitor every 3 to 7 days, if no improvement, treat as grade 3

- Discontinue ICI
- Inpatient admission required
- Methylprednisolone 1-2 mg/kg/day, taper over 6+wk
- No improvement over 48 h: consider infliximab, IVIg, or mycophenolate

Background & Symptoms

Moderate (Grade 2)

Severe (Grade 3-4)

CT, computed tomography; H&P, history and physical exam; IVIg, intravenous immunoglobulin; PE, pulmonary embolism; R/O, rule out. Brahmer JE, et al. *J Clin Oncol.* 2018;36(17):1714-1768; Schneider B, et al. *J Clin Oncol.* 2021;39(36):4073-4126.

Management of irAEs: Colitis

- Incidence 0.3-16%
- Median onset: 4-10 weeks
- CTLA-4 > PD-1/L1
- Abdominal pain
- Diarrhea
- Black, tarry stools
- Blood or mucus in stools
- R/O infection, medication

Background & Symptoms

- Loperamide or diphenoxylate/ atropine for 2-3 days
- Hydration
- Monitor. If persistent, check lactoferrin; if positive, treat as grade 2. If negative, add mesalamine and/or cholestyramine

Mild (Grade 1)

Hold ICI

- Prednisone 1-2 mg/kg/day
- No response in 2-3 days, continue steroids, add infliximab or vedolizumab

within 2 weeks

Moderate

(Grade 2)

- Discontinue ICI
- Consider inpatient management
- IV methylprednisolone 1-2 mg/kg/day
- No response in 2 days, continue steroids, add infliximab or vedolizumab within 2 weeks

Severe (Grade 3-4)

Steroid-Refractory irAEs

- Patients with steroid-refractory irAEs require quick management and possibility inpatient care
- Some agents may be used in combination, depending on irAE type and severity
- No preferred agent; doses and duration of therapy variable

Select Agents Used for Refractory irAEs					
Abatacept	Etanercept	Plasmapheresis			
Adalimumab	Hydroxychloroquine	Rituximab			
Alemtuzumab	Infliximab	Sulfasalazine			
Anti-thymocyte globulin (ATG)	IVIg	Tocilizumab			
Azathioprine	Leflunomide	Tofacitinib			
Cyclophosphamide	Methotrexate	TNF-α inhibitors			
Cyclosporine	Mycophenolate	Ustekinumab			
Dupilumab	Omalizumab	Vedolizumab			

Martins F, et al. *Lancet Oncol*. 2019;20(1):e56-e64; NCCN Guidelines for Management of Immunotherapy-Related Toxicities. v1.2022; Brahmer JR, et al. *J Clin Oncol*. 2018;36(17):1714-1768; Puzanov I, et al. *J Immunother Cancer*. 2017;5(1):95.

DDIs and ICIs: Background

- Traditionally, concomitant medications alter efficacy and worsen toxicity through pharmacodynamic (PD) and pharmacokinetic (PK) interactions
- ICIs have a predictable PK profile that is minimally influenced by concomitant medications
- Drug-drug interactions (DDIs) are emerging in the literature
 - Which medications?
 - Medications that have immunomodulatory effects
 - Medications that impact the gut microbiome
 - Does timing matter?
 - Evidence suggests that medications that exert these effects prior to ICI administration may interact with the PD properties of the ICI

DDIs: Corticosteroids

- Corticosteroids are commonly prescribed in oncology
 - Cancer-related symptoms
 - Treatment-related adverse effects (corticosteroid treatment is first-line therapy for irAEs)
 - Anticancer effects
 - Oncologic emergencies
 - Underlying comorbidities
- Mechanism of interaction
 - Anti-inflammatory effects via inhibition of interleukin-1 and -6 (IL-1 and IL-6)
 - Leads to impairment of CD28 costimulatory pathway, which causes diminished T-cell function
 - May also alter the microbiome
- Significance of corticosteroids on OS and PFS
 - Challenging to understand
 - Patients on >10 mg of prednisone equivalent daily are excluded from clinical trials
- Timing and duration consideration

Cortellini A, et al. J Immunother Cancer. 2020;8(2):e001361; Goodman RS, et al. Clin Cancer Res. 2023 Feb 3:OF1-OF8. <u>https://doi.org/10.1158/1078-0432.CCR-22-3181</u> These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

Corticosteroids and ICIs: Select Clinical Studies

Reference	Study Design (N)	Cancer Type	ІСІ Туре	Steroid Prescription and Window	Early Steroid Users (N)	Clinical Findings in Early Steroid Users
Arbor et al	Retrospective multicenter (640)	NSCLC	Anti-PD-1/PD-L1	 10-20 mg of prednisone for palliative indications Within 30 days or on the day 	14% (90)	Baseline corticosteroids of \geq 10 mg: decreased OS (5.4 vs 12.1 months, <i>P</i> <.001) and PFS (1.9 vs 2.6 months, <i>P</i> <.001)
Scott et al	Retrospective (210)	NSCLC	Anti-PD-1/PD-L1	>10 mg prednisone	12% (25)	Decreased OS (4.3 vs 11 mo, $P = .006$)
Ricciuti et al	Retrospective (650)	NSCLC	CTLA-4 ± anti-PD- 1/PD-L1	 2 cohorts: ≥10 mg prednisone <10 mg prednisone At time of ICI within 24 h 	14.3% (93)	≥10 mg cohort: decreased OS (4.9 vs 11.2 mo, P <.001) and PFS (2.0 vs 3.4, P = .01) <10 mg cohort: No significant difference on survival outcomes
Fuca et al	Retrospective (151)	NSCLC	Anti-PD1	>10 mg prednisone at time of ICI within 1 mo	23% (35)	Decreased OS (4.86 vs 15 mo, <i>P</i> <.001) and PFS (1.98 vs 3/94, <i>P</i> = .003)
Maslov et al	Retrospective (247)	Metastatic cancer	CTLA-4 ± anti-PD- 1/PD-L1	Corticosteroid use around timing of ICI. Patients in 2 cohorts: • ≥2 mo after starting ICI • <2 mo after starting ICI	52% (129)	Steroid use ≥ 2 mo after starting ICI had longer PFS (HR 0.30, P < .001), and OS (HR 0.34, $P< .0001$) than those who received steroids <2 mo after starting ICI

Adapted from: Hussain N, et al. Hum Vaccin Immunother. 2021;17(1):55-61; Goodman RS, et al. Clin Cancer Res. 2023 Feb 3:OF1-OF8. https://doi.org/10.1158/1078-0432.CCR-22-3181

Key Takeaways: Corticosteroids

- Low dose of corticosteroids may not compromise antitumor efficacy
- Steroids should be avoided or decreased prior to initiation with an ICI
- If corticosteroids cannot be avoided, consider corticosteroid-sparing approaches, delaying corticosteroid exposure, or if possible, short delays of ICI to facilitate a corticosteroid taper if appropriate
- Clinical trials to watch: NCT03656627 and NCT03816345, which are evaluating use of nivolumab in autoimmune diseases

Factors That Influence ICI Efficacy

Timing

• Baseline and early corticosteroid use can interact with the PD of ICI

Dose

• Higher doses of corticosteroid associated with poor survival outcomes

Cancer-related symptoms

 Corticosteroid use for cachexia and other cancer-related symptoms associated with poorer outcomes

Goodman RS, et al. *Clin Cancer Res.* 2023 Feb 3:OF1-OF8. <u>https://doi.org/10.1158/1078-0432.CCR-22-3181</u>

Emerging DDIs: PPIs

- Selective inhibitors of H+/K+ ATPase and are widely used for GERD and peptic ulcer treatment
 - Commonly prescribed for oncology to manage GI symptoms and prevent erosion of the gastric mucosal lining caused by cancer treatments
- PPIs potential to cause immune-suppression is multifaceted
 - Can cause changes to gut microbiome diversity
 - Changes to gastric pH
 - Delay in gastric emptying
 - Immune-suppression by reducing expression of adhesion molecules on inflammatory cells

GERD, gastroesophageal reflex disease; GI, gastrointestinal; H+/K+, gastric hydrogen potassium; PPIs, proton pump inhibitors.

Hussain N, et al. Hum Vaccin Immunother. 2021;17(1):55-61; Chalabi M, et al. Ann Oncol. 2020;31(4):525-531.

PPIs and ICIs: Select Clinical Studies

Reference	Study Design (N)	Cancer Type	ICI Type	Endpoint	Findings
Chalabi et al	Retrospective review (169)Pooled analysis of OAK and POPLAR trials	NSCLC	Atezolizumab	OS, PFS	PPI associated with shorter OS (9.6 vs 14.5 months, HR 1.45, 95% CI 1.2-1.75; $P = .01$) PPI associated with shorter PFS (1.9 vs 2.8 months, HR 1.30, 95% CI 1.10-1.53; $P = .001$)
Hopkins et al	Retrospective review (1225)Pooled analysis of IMpower150	NSCLC	Atezolizumab	OS, PFS	PPI associated with worse OS (HR 1.53, 95% CI 1.21-1.95; $P < .001$) PPI associated with worse PFS (HR 1.34, 95% CI 1.12-1.61; $P = .002$)
Chen et al	Meta-analysis (7383)	Various	CTLA-4 ± Anti- PD-1/PD-L1	OS, PFS	PPIs associated with worse OS and PFS. OS HR 1.31 (95% CI, 1.19-1.44; <i>P</i> <.001) PFS HR 1.30 (95% CI, 1.17-1.46; <i>P</i> <.001)
Baek et al	Retrospective review (2963)	NSCLC	Anti-PD-1/ PD-L1	OS	PPI associated with worse OS and a 28% increased risk of mortality compared to nonuse (HR 1.28; 95% CI 1.13-1.46)

Chalabi M, et al. Ann Oncol. 2020;31(4):525-531; Hopkins AM, et al. Br J Cancer. 2022;126(1):42-47;

Chen BQ, et al. Ther Adv Med Oncol. 2022;14:17588359221111703. doi: 10.1177/17588359221111703; Baek

YH, et al. Int J Cancer. 2022;150(8):1291-1300.

Emerging DDIs: Antibiotics

- Mechanism of interaction
 - Broad-spectrum antibiotics can cause long-standing disruption to gut microbiome
- Antibiotic impact on survival
 - Data suggests that patients treated with antibiotics have worse survival outcomes
 - Shorter OS, PFS, and ORR
 - Duration of antibiotics and influence on outcomes also not clear
 - Interpreting data is challenging
 - Patient-specific factors (eg, performance status, comorbid conditions) are not considered

Araji G, et al. J Immunother Precis Oncol. 2022;5(1):13-25.

Antibiotics and ICIs: Select Clinical Data

Reference	Study Design (N)	Cancer Type	ICI Type	Antibiotic Window pre-ICI	Clinical Findings in Antibiotic Users
Ahmed et al	Retrospective (60)	Multiple	Anti-PD-L1/PD-1 ± chemotherapy	- 14 days and +14 days	Lower response rates in antibiotic users (29.4%) versus nonusers (62.8*%)
Tinsley et al	Retrospective (291)	NSCLC, melanoma, RCC	Anti-PD-1/PD-L1	-14 days and +42 days	Decreased OS (10.4 vs 21.7 mo, $P = .002$) and PFS (3.1 vs 6.3 mo, $P = .003$)
Ruiz-Patino et al	Retrospective (140)	NSCLC	Anti-PD-L1/PD-1 ± chemotherapy	-30 days and during ICI	Decreased OS when antibiotics started prior to treatment (20.3 vs 40.6 mo, $P < .05$) Decreased OS when antibiotics used during treatment (24.7 vs 40.6 mo, $P < .05$) No change in PFS, no changes in RR
Pinato et al	Prospective multicenter (196)	Multiple	Anti-PD-L1/PD-1	-30 days and during ICI	Decreased OS (2 vs 26 mo, $P < .01$)
Kaderbahi et al	Retrospective (74)	NSCLC	Anti-PD-L1/PD-1	-90 days	No changes in PFS ($P = .72$), no change in RR ($P = .75$)
Kim et al	Retrospective (234)	NSCLC (131), others (103)	Anti-PD-1/PD-L1, Anti-CTLA-4	-60 days	Decreased OS (5 vs 17 mo, P <.001) and PFS (2 vs 4 mo, P <.001)

RCC, renal cell carcinoma; RR, response rate.

Adapted from: Araji G, et al. J Immunother Precis Oncol. 2022;5(1):13-25.

Key Takeaways

- Immunotherapy has produced strong and robust clinical outcomes in patients with early- or advanced-stage NSCLC
- Whether to choose concurrent chemoradiation followed by ICI, adjuvant ICI, or neoadjuvant treatment is made on a case-by-case basis
- Organ-related irAE is a diagnosis of exclusion and that diagnosis can be challenging
- Pharmacists play a key role in the management of irAEs through therapy selection and education
- DDIs with irAEs continues to emerge. Mechanism of interaction may be related to alterations in the gut microbiome or medications that have an immunomodulatory effect

Questions & Answers